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Abstract: How wildfires are managed is a key determinant of long-term socioecological resiliency and
the ability to live with fire. Safe and effective response to fire requires effective pre-fire planning, which
is the main focus of this paper. We review general principles of effective federal fire management
planning in the U.S., and introduce a framework for incident response planning consistent with
these principles. We contextualize this framework in relation to a wildland fire management
continuum based on federal fire management policy in the U.S. The framework leverages recent
advancements in spatial wildfire risk assessment—notably the joint concepts of in situ risk and source
risk—and integrates assessment results with additional geospatial information to develop and map
strategic response zones. We operationalize this framework in a geographic information system (GIS)
environment based on landscape attributes relevant to fire operations, and define Potential wildland
fire Operational Delineations (PODs) as the spatial unit of analysis for strategic response. Using
results from a recent risk assessment performed on several National Forests in the Southern Sierra
Nevada area of California, USA, we illustrate how POD-level summaries of risk metrics can reduce
uncertainty surrounding potential losses and benefits given large fire occurrence, and lend themselves
naturally to design of fire and fuel management strategies. To conclude we identify gaps, limitations,
and uncertainties, and prioritize future work to support safe and effective incident response.

Keywords: risk-informed decision making; effects analysis; fire management planning;
incident management

1. Introduction

In the western U.S. and elsewhere, new paradigms are emerging that recognize a need to
deemphasize fire exclusion, expand application of prescribed and managed natural fire, and foster
resilience and adaptation to fire [1–4]. The National Cohesive Wildland Fire Management Strategy
in the U.S. focuses on making meaningful progress towards attainment of resilient landscapes, fire
adapted communities, and safe and effective response to fire [5]. Our focus here is the goal of safe
and effective response to fire, and is based on the premise that how fires are managed—not just how
landscapes are managed and communities respond before and after fires occur—is a key determinant
of long-term socioecological resiliency and the ability to “live with fire” [6–8].
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Improving the safety and effectiveness of response to fire requires a multi-faceted approach.
At the tactical and operational level enhancing firefighter safety remains a priority, as is the evaluation
of suppression resource use and effectiveness (e.g., [9,10]). From a broader organizational perspective,
improving response effectiveness requires ensuring that fire management objectives are consistent
with land and resource objectives, and that implemented fire management strategies are likely to move
landscapes toward desired conditions. Effective response therefore requires the existence of clear,
consistent, risk-informed fire management objectives as well as guidance for how to achieve those
objectives, i.e., effective response requires effective pre-fire planning (3).

Meyer et al. [11] comprehensively review principles of effective federal fire management planning
in the U.S. as they relate to contemporary policy; here we generalize and distill some essential features
to motivate the current study. First, the plans must be spatially explicit—this includes mapping highly
valued resources and assets (HVRAs) that may be impacted by fire, as well as landscape attributes
(e.g., roads and ridgetops) relevant to fire operations. Second, plans must be developed using the best
available science and information. Third, plans must be flexible and adaptive in order to be responsive
to changing conditions. Investing in pre-fire planning can ultimately help alleviate some of the
uncertainties and the time pressures that characterize the incident response decision environment [12].

In this paper we introduce a framework for incident response planning that is consistent with
these principles. We leverage recently developed concepts and techniques in spatial risk assessment
and integrate results with additional geospatial information to develop and map strategic response
zones. In particular we focus on two alternative spatial representations of risk: in situ and source.
In situ risk analysis reflects localized (i.e., raster-based) estimates of potential losses or benefits given
the presence of at least one HVRA in the given location, and these estimates can be expressed
conditionally or weighted by the location-specific probability of fire occurrence using stochastic
fire spread modeling [13–16]. Risk source analysis by contrast focuses not on where the losses or
benefits might occur, but rather where the risk might originate, estimated by determining fire-level
HVRA losses and benefits and associating these aggregate impacts back to a given ignition location
using a set of simulated fire perimeters [17]. A broad range of applications have used similar fire
modeling approaches to quantify HVRA exposure to fire without directly modeling consequences
(e.g., [18–24]).

There are four primary purposes to this research effort. First and foremost is to demonstrate
the potential utility of a spatial fire planning framework and the guidance offered by predefined
strategic response zones. Second, we illustrate how the concepts of in situ and source risk can
help managers better understand potential consequences and evaluate responses to fire. Third, we
outline a method to operationalize the response planning framework in a geographic information
system (GIS) environment based on landscape attributes relevant to fire operations. Lastly, we
identify gaps, limitations, and uncertainties, and prioritize future work to support safe and effective
incident response.

2. A Spatial, Risk-Informed, Flexible Framework for Incident Response

In the U.S., current federal wildland fire management policy affords a large degree of flexibility
in response to fire, ranging from aggressive suppression in order to achieve protection objectives to
managing naturally ignited fires when conditions are favorable in order to achieve resource objectives.
Managers may also intentionally ignite wildland fires (i.e., prescribed fires) to reduce hazard or enhance
resource conditions, when conditions, regulations, and other constraints allow.

The conceptual Wildland Fire Management Continuum (Figure 1) visually depicts how a wildland
fire may be concurrently managed for one or more objectives. How objectives are identified and
balanced can change as the fire spreads across the landscape and as the conditions under which the fire
is burning change. Objectives are affected by: changes in fuels, weather, topography; varying social
understanding and tolerance; and involvement of other governmental jurisdictions having different
missions and objectives. Other factors that influence response include human safety risk, ecological
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risk, perceived career risk (e.g., liability issues or adverse performance reviews if a fire managed for
resource benefit escapes control and causes damage), management requirements, and regulations.
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Figure 1. Conceptual Wildland Fire Management Continuum.

The basics of the Wildland Fire Management Continuum can be described according to
four dimensions:

1. The length (side to side) of the Continuum shows the spatial component—the location of the
fire on the landscape—that affects the mix of objectives. Spatial risk assessment results directly
speak to this dimension of the continuum, and the central idea is that potential losses and benefits
across the landscape have been assessed up front. On the left, the location favors protection
objectives, whereas on the right resources objectives are favored.

2. The width (up and down) of the Continuum illustrates the different social, ecological or
environmental conditions affecting the mix of objectives. This dimension allows for flexibility in
response decisions considering factors not easily captured with spatial risk assessments. On the
top, protection objectives prevail, whereas on the bottom resource objectives are easier to meet.

3. The colors across the Continuum depict the range of objectives taking in the combination of both
location and conditions. Red (upper left) represents where the combination of conditions and
landscape location result in protection as the predominate objective. Blue (lower right) instead
represents conditions where enhancing resource conditions is the primary objective.

4. The teeth on each end of the Continuum are to show that it wraps around to form a cylinder.
As an example, a fire intended to be managed exclusively for ecological purposes may escape
control due to major changes in weather conditions, grow rapidly to threaten resources and assets,
and management efforts would transition to aggressive suppression (e.g., the 2000 Cerro Grande
Fire that began as a prescribed fire but escaped and caused significant damage to Los Alamos,
New Mexico, USA).

As a conceptual model the Continuum is useful for a range of management and planning horizons,
with varying degrees of change in relevant social, ecological, or environmental conditions. For example,
across fire seasons, changes in air quality regulations and population growth may lead to smoke
concerns limiting opportunities for increased fire, even in locations where ecological benefits would
likely result. Similarly, changes in fuel conditions due to succession and disturbance may lead some
locations to present greater or lesser risk. At a smaller time scale, over the course of a single fire
event, social concerns such as tolerance of smoke or restricted recreational access could influence
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management opportunities. It is important to note that in the incident management context the
location dimension becomes dynamic as the fire grows across the landscape, and as a result may
be the more important factor in determining management objectives. The bottom panel of Figure 1
presents a stylized illustration of a fire growing as an ellipse. Although the fire ignited in a location
suitable for resource objectives, the fire grew in the direction of an area containing resources and assets
more susceptible to loss, likely leading to protection objectives dictating response strategies along
the head and flanks of the fire. In reality, as a specific incident unfolds fire managers have access to
tailored decision support functionality and more detailed information on risks and opportunities to
help determine response objectives and actions. Thus, although the conceptual underpinnings of the
Continuum have clear relevance for risk-informed and dynamic incident management, the Continuum
is perhaps most useful for planning applications in advance of incidents.

Synthesizing risk assessment results according to the location dimension allows for the landscape
to be zoned according to broad strategic response categories. Further on we will describe our
spatial approach to zoning up the landscape. This process is not dissimilar from past practices
that stated objectives and appropriate responses at the administrative fire management unit level, but
with the explicit intention to create zones that are spatially logical relative to landscape attributes,
fire management operations, and assessed risks, and that therefore translate more clearly to fire
management objectives and response guidance. Note that a given response category may encompass a
range of protection and resource objectives, and how categories are differentiated is not necessarily
black and white. The aim however is not to predetermine response decisions, but rather to simplify the
decision space while accounting for flexibility in response to changing conditions. The ultimate intent
is to provide useful support to strategic response decisions and more broadly to fuel management and
forest restoration decisions.

For proof-of-concept, below we define and describe three generalized strategic response zone
categories. In practice additional categories can be created and tailored to the specific planning context,
and spatial response zone boundaries can updated through time in response to changing conditions.
In fact this delineation of zones lends itself to a quantifiable performance measure, the amount of area
that moves between zones over time (moving from protection to restoration, for instance, would be
indicative of reduced risk).

1. Protect: Current conditions are such that HVRAs are at high risk of loss from wildfire. Mechanical
fuel treatments would principally be used to yield desired fire behavior conducive to more
effective fire suppression, or in some instances retention of desired conditions for natural
resources. Prescribed burning would principally be used to maintain previously treated areas.
The use of wildfire to increase ecosystem resilience and provide ecological benefits would be
very limited.

2. Restore: Current conditions are such that HVRAs are at moderate risk of loss from wildfire.
Wildfire could be used to increase ecosystem resilience and provide ecological benefits when
conditions allow. Strategically located mechanical treatments and/or prescribed burning,
where feasible, may be a necessary precursor to the reintroduction of wildfire to achieve
desired conditions.

3. Maintain: Current conditions are such that HVRAs are at low risk of loss from wildfire, and
many natural resources may benefit from fire. Due to low risk, wildfires are expected to be
used as often as possible to maintain ecosystem resilience and provide ecological benefits when
conditions allow. Mechanical treatments and/or prescribed burning, where feasible, are used to
complement wildfire to achieve desired conditions. Aggressive suppression to keep fires as small
as possible would be very limited.

3. Methods

We organize our description of methods as follows. First, we identify the study area we use to
operationalize the response planning work, and describe its relevance to real-world decision support
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for US Forest Service land and fire management planning. Next, we describe our spatial risk assessment
methods, focusing primarily on a novel stochastic fire simulation approach developed to account for
the size and heterogeneity of the study area, as well as the in situ and source risk calculations. Lastly, we
describe the generation of Potential wildland fire Operational Delineations (PODs) as the fundamental
spatial unit of analysis for assigning response categories, and define our categorization schema.

3.1. Study Area

The study area encompasses the Inyo, Sequoia, and Sierra National Forests, which are located in
the southern Sierra Nevada Mountains in California, USA. These three Forests are “early adopters” of
the US Forest Service’s 2012 Planning Rule, and as of this writing are in the process of updating their
Land and Resource Management Plans (LRMPs). Agency-wide guidance directs National Forests to
spatially depict LRMPs, and the Pacific Southwest Region further directs National Forests in California
to incorporate fire management wildfire risk into these plans. Guidance in LRMPs ultimately provides
the basis for spatial fire plans as well as strategic fire management objectives.

Part of the plan revision process is documentation of an Environmental Impact Statement (EIS) as
required by the National Environmental Policy Act (NEPA), and our study area includes the EIS extent
for these three National Forests. The fire modeling extent (Figure 2) reflects a buffered area around
these Forests so that valid results could be produced not only within each Forest, but also in the land
area adjacent to the Forests. All HVRAs are mapped to the EIS extent. The authors, along with staff
from local Forests and the Pacific Southwest Region, jointly designed and implemented the Southern
Sierra Risk Assessment (SSRA) to support planning efforts. It is important to clarify that while we use
many of the data, processes, and products generated as part of the SSRA, what we present here is a
generalized depiction of the response planning framework and does not reflect the specifics of any
NEPA-related decision processes.
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3.2. Fire Occurrence Areas

The fire modeling area for the SSRA area is a 9.7 million ha extent characterized by vegetation
conditions ranging from valley-bottom grasslands in the Central Valley to alpine timber at the highest
elevations, and to arid sagebrush shrubland on the lee side of the Sierra crest. Because this landscape
is so large and variable, historical fire occurrence and fire weather summaries for the entire area
are inadequate to characterize the variability within and among some of the distinct vegetation
communities found along elevation gradients within this landscape. Therefore, we summarized
historical fire occurrence for eight different fire occurrence areas (FOAs) within the SSRA greater
landscape. The boundaries for these areas are based on elevation-based ecozones, aggregated where
appropriate for fire modeling purposes. The resulting FOAs are mapped in Figure 3 and their land-area
extent summarized in Table 1.
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Figure 3. Eight fire occurrence areas (FOAs) used in the Southern Sierra Risk Assessment for
summarizing historical fire occurrence.

Table 1. Summary of total area, fire-modeling area, and Remote Automated Weather Station
(RAWS) station used in each of the eight fire occurrence areas (FOAs) used in the Southern Sierra
Risk Assessment.

FOA Total Hectares Fire Modeling Hectares RAWS Station Used

1 2,157,931 1,756,236 Trimmer
2 1,636,274 1,255,834 Mount Elizabeth
3 816,730 813,484 Oak Creek
4 4,422,598 1,917,912 Oak Creek
5 583,919 418,494 Blackrock
6 1,194,651 1,191,764 Blackrock
7 3,250,189 1,662,750 Trimmer
8 2,605,756 706,760 Oak Creek
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3.3. Historical Fire Occurrence and Weather Data

We used the Short [25] Fire Occurrence Database (FOD) as the foundation for summarizing fire
occurrence within each of the eight FOAs described in the previous section. For each FOA, records
were selected from the FOD based on the start location of each wildfire. This process produced eight
tabular FODs. Though we retained all attributes of the original FOD, the main attributes of interest are
the start location, start date, final fire size, and cause class (human-caused vs. natural). Specifically we
queried the FOD for information on “large fires”, defined here as greater or equal to 100 ha.

These tabular datasets were summarized to estimate two main contemporary, historical large-fire
occurrence measures for each FOA: mean annual number of large fires, and mean annual large-fire
area burned. We tabulated these measures across the entire FOA, including portions beyond the fire
modeling landscape extent, and normalized the annual occurrence rates to a per-million-acres basis to
permit comparison of wildfire occurrence across FOAs of different sizes.

After reviewing data available from scores of RAWS stations across the landscape, we ultimately
identified four RAWS stations to use for historical fire weather data across the landscape: Blackrock
(044722), Oak Creek (044804), Mt. Elizabeth (043605), and Trimmer (044510). These stations are located
in relatively representative locations (Figure 4) and have a relatively complete and long-duration
record of historical weather. Each RAWS was used for one or more FOAs (Table 1). The historical
data for each RAWS were used to generate results for use in the fire modeling system described in the
next section.
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3.4. Wildfire Simulation

For this analysis we used the FSim large-fire simulator [26] to quantify wildfire hazard across the
landscape at a pixel size of 180 m (3 ha per pixel). FSim is a comprehensive fire occurrence, growth,
behavior, and suppression simulation system that uses locally relevant fuel, weather, topography,
and historical fire occurrence information to make a spatially resolved estimate of the contemporary
likelihood and intensity of wildfire across the landscape [26]. Due to the highly varied nature of
weather and fire occurrence across the large landscape, we ran FSim for each of the eight FOAs
independently, and then compiled the 8 runs into a single coherent result using the method described
in Thompson et al. [27]. For each FOA, we parameterized and calibrated FSim based on the location of
historical fire ignitions within the FOA, which is consistent with how the historical record is compiled.
We then used FSim to start fires only within each FOA, but allowed those fires to spread outside of the
FOA. This, too, is consistent with how the historical record is compiled. Because fires are restricted
to igniting within a FOA and growing into adjacent FOAs, the perimeter results from each FOA can
be merged in a GIS without additional calculations. Some of the useful attribute fields attached to
each fire perimeter include x and y coordinates of the ignition location, start-day Energy Release
Component (ERC), start-day percentile ERC, and final fire size.

FSim requires information regarding historical weather. We used the four RAWS identified in
the previous section for the necessary weather inputs. Weather data for these RAWS were used to
produce monthly distributions of wind speed and direction, season-long trends of mean and standard
deviation of ERC for National Fire Danger Rating System (NFDRS) fuel model G (hereinafter called
ERC-G), and values for 1-, 10-, and 100-h timelag dead fuel moisture content associated with the 80th,
90th and 97th percentile conditions. These inputs are captured in FSim’s FRISK file.

FSim also requires information regarding the contemporary historical occurrence of fire in
the analysis area, specifically large fires—those that escape initial attack and require extended
suppression response. For each FOA we used the summaries of historical occurrence described
above to parameterize and then calibrate FSim. Historical fire occurrence was not uniform across
the fire modeling area—large fires were more likely to occur in some portions of the landscape than
others. To account for that spatial non-uniformity, FSim uses a geospatial layer representing the
relative ignition density across the landscape. FSim randomly locates wildfires according to this
density grid during simulation. As described above, we made two ignition density grids (IDGs) using
the ArcGIS-Spatial Analyst density tools with a 2-km cell size and 30-km search radius.

FSim simulations for each FOA were calibrated to historical measures of large fire occurrence
including: mean historical large-fire size, mean annual burn probability, mean annual number of
large fires per million hectares, and mean annual area burned per million hectares. From these
measures, two calculations are particularly useful for comparing against and adjusting FSim results:
(1) calculations of mean large fire size indicate whether simulated fires need to be larger or smaller
on average; and (2) number of large fires per million hectares indicates whether FSim has simulated
enough fires to match the annual frequency of large fires demonstrated by the historical record.

After calibrating FSim for each FOA independently, the final FSim runs included 10,000 years of
simulated fire behavior results including annual burn probability, flame-length probabilities at each of
the six flame-length categories, and fire perimeter polygons. We combined the results into a single
landscape-wide result where the area-wide burn probability is simply the sum of all eight FOAs, and
flame-length probabilities are weighted by their respective FOA burn probability and summed across
all FOAs as described in Thompson et al. [27]. We then resampled the compiled 180 m results to a
90 m pixel size to match the resolution of the HVRA spatial layers. Using a 90 m fuel model grid,
we identified any burnable pixels with zero burn probabilities resulting from the resample to a finer
pixel size. To populate these pixels with an appropriate value, we used a moving-window smoothing
to calculate the mean burn probability for all burnable pixels on the 90-m landscape, and then used
these results to back-fill any remaining burnable pixels with a non-zero burn probability. This same
approach was used for both annual burn probability and the six flame length probability grids.
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A flame length probability grid represents the conditional probability that the flame length will
be within a given flame length class. The flame length probability estimates are conditional, in the
sense that they quantify probabilities given that the cell burns—simulation runs that don’t burn the
cell are ignored in conditional flame length probability calculations. At a given location, the sum of
the six flame length probability values necessarily equals 1.0. For our purposes here flame lengths are
particularly important for estimating fire effects to HVRAs.

3.5. HVRA Characterization

The HVRAs assessed in the SSRA were selected and characterized by an ad hoc interdisciplinary
team comprised of resource specialists, fire staff, and leadership team members from the three National
Forests and the Region. The characterization of HVRAs is a multi-step process that includes generating
maps of HVRA locations, estimating potential fire effects by defining HVRA-specific response functions
(RFs), and assigning HVRA-specific relative importance (RI) weights [13]. RI weights range from 1 to
100, with 100 indicating highest importance (an RI value of 0 would imply that the HVRA should be
excluded from the assessment). This approach is now widely used by the US Forest Service and has
been implemented at national, regional, and forest-level scales ([14–16].

The SSRA included the following HVRA categories: visual resources (e.g., scenic byways),
recreation and administrative infrastructure (e.g., ski resorts), major infrastructure (e.g., transmission
lines and communication sites), inholdings (e.g., private industrial and state forests), where people live,
critical terrestrial habitat (California spotted owl, northern goshawk, fisher, and sage grouse), timber
resources, and watershed resources. Each HVRA was characterized by one or more data layers of
sub-HVRA and, where necessary, further categorized by an appropriate covariate. Covariates include
data such as erosion potential categories, age class of habitat (mature versus immature), and population
density classes, the inclusion of which allows for refined estimation of potential fire effects and/or
relative importance.

Local resource specialists produced a tabular RF for each HVRA category listed above. RFs are
tabulations of the relative change in value of an HVRA if it were to burn in each of six flame-length
classes (i.e., each HVRA is assigned a response value for each flame length class) A positive value in a
response function indicates a benefit, or increase in value; a negative value indicates a loss, or decrease
in value. Response function values ranged from ´100 (greatest possible loss of resource value) to +100
(greatest increase in value). In order to integrate HVRAs with differing units of measure (for example,
habitat vs. homes), relative importance (RI) values were assigned to each HVRA by members of the
forest leadership teams for the three Southern Sierra National Forests. Relative importance values
were developed by first ranking the HVRAs then assigning an RI value to each. The most important
HVRA was assigned RI = 100. Each remaining HVRA was then assigned an RI value indicating
its importance relative to that most-important HVRA. Relative Importance rankings for the three
forests were combined into a single set of rankings by the fuel planning staff, and then adjusted as
needed to ensure consistency within the analysis. These components are used along with fire behavior
results from FSim in the conditional net value change (cNVC) and expected net value change (eNVC)
calculations introduced in the next section.

Although each assessment is unique and reflects factors like data availability and management
context, RFs and RIs were qualitatively similar to other assessments (e.g., [13,15]). For brevity we
present only the maximum (best case) and minimum (worst case) RF values for each HVRA category to
convey the range of possible losses and benefits (Table 2); additional information is available from the
authors upon request. In nearly all cases the worst case is a complete loss of value, apart from major
infrastructure which was determined to have higher resistance to loss. Whereas assets generally saw a
best case of neutral or very low loss levels, many resources were expected to benefit from exposure to
fire, particularly terrestrial habitat. In most cases these high benefit levels were from exposure to low
intensity fire.
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Table 2. Maximum (best case) and minimum (worst case) Response Function values for all major
HVRA categories.

HVRA Best Case Worst Case

Where people live ´5 ´100
Inholdings +50 ´100

Major infrastructure 0 ´40
Recreation infrastructure 0 ´100

Visual resources +70 ´100
Terrestrial habitat +90 ´100

Timber +45 ´100
Watersheds +20 ´100

In addition to the HVRAs listed above, the SSRA also assessed the expected effects of wildfire on
vegetation structure following the methods described in Scott et al. [28]. This is a custom approach
separate from how fire effects are estimated for all other HVRAs. We mapped 15 biophysical setting
(BpS) models selected from the LANDFIRE BpS dataset [29] along with their respective successional
classes (S-Classes) present on the landscape. This approach uses the six flame-length classes produced
by FSim to outline S-Class transition rules for fires burning at a given intensity. Each BpS/S-Class
combination has a status within its respective landscape stratum, relative to historical reference
conditions. Experiencing fire of a given flame length transitions a BpS/S-Class from one status to
another, and the RF captures the net value change associated with a transition from one status to
another. As an example, a transition from surplus to deficit would be strongly positive (+100), whereas
a transition from deficit to surplus would be strongly negative (´100).

3.6. In Situ Risk Calculations

The next step is to characterize wildfire risk, quantified here using the concept of net value change,
or net response, of each HVRA to fire [13,30]. Results are limited to those pixels or grid cells that have
at least one HVRA and a non-zero probability of burning, i.e., there is no risk without probability of
burning or potential consequences to an identified HVRA. A commonly used risk metric is expected
net value change (eNVC), which reflects potential consequences weighted by the likelihood of fire
occurring. Here our focus however is planning for response given a fire occurs, and so we are more
interested in the conditional net value change (cNVC).

The in situ risk calculations produce spatial grids of cNVC and eNVC to all HVRAs. These metrics
integrate potential losses and benefits across all HVRAs in the same terms, in effect allowing for an
apples-to-apples comparison. To do so some additional calculations related to weighting are required.
The RI values apply to the overall HVRA on the assessment landscape as a whole. The calculations
need to take into account the relative extent of each HVRA to avoid overemphasizing HVRAs that
cover many acres. This was accomplished by normalizing the calculations by the relative extent (RE) of
each HVRA in the assessment area. Here, relative extent refers to the number of 90-m pixels mapped
to each HVRA. In using this method, the relative importance of each HVRA is spread out over the
HVRA’s extent. An HVRA with few pixels can have a high importance per pixel; and an HVRA with a
great many pixels has a low importance per pixel. A weighting factor (WF) representing the relative
importance per unit area was calculated for each HVRA.

The RF and WF values were combined with estimates of the conditional flame-length probability
(FLP) in each of the six flame-length classes to estimate cNVC as the sum-product of flame-length
probability (FLP) and response function value (RF) over all the six flame-length classes, with a
weighting factor adjustments for the relative importance per unit area of each HVRA, as follows:

cNVCj “

n
ÿ

i

FLPi ˆ RFij ˆ WFj (1)
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where i refers to flame length class (n = 6), j refers to each HVRA, WF is the weighting factor based
on the ratio of the relative importance to the relative extent (number of pixels) of each HVRA. The cNVC
calculation shown above places each pixel of each resource on a common scale (relative importance),
allowing them to be summed across all resources to produce the total cNVC at a given pixel.

cNVC “
m

ÿ

j

cNVCj (2)

where cNVC is calculated for each pixel in the analysis area (m). Finally, eNVC for each pixel is
calculated as the product of cNVC and annual BP:

eNVC “ cNVCˆ BP (3)

To reiterate, our focus here is on cNVC calculations, so we provide the equation for eNVC
calculations for the sake of completeness.

3.7. Source Risk Calculations

Risk-source maps combine both pixel-based risk assessment results and fire perimeter polygons
to identify each fire’s potential for positive or negative outcomes, and tie that information back to
the fire’s ignition to identify spatial patterns on the landscape. Thus identifying the source of risk to
HVRAs requires fire perimeter polygons simulated by FSim, as well as the cNVC grid produced from
the effects analysis above. The total NVC for a given fire (NVC f ire) is calculated as the sum of cNVC of
each pixel (k) that fell within a simulated fire perimeter (z = total number of pixels in perimeter), as shown
in the equation below.

NVC f ire “

z
ÿ

k

cNVCk (4)

We calculated NVC f ire for every fire perimeter on the landscape using the zonal statistics function
of the RMRS Raster Utility Tool [31] which allows for efficient summation of all pixels contained by
a given perimeter (or summary zone), regardless of the other fire perimeters it overlaps. NVC f ire is
then assigned back to that fire’s ignition location, for every ignition on the landscape to create a point
feature layer with NVC f ire at each point. The points are then plotted using a smoothing approach
to identify the broader trends emerging from 10,000 years of simulated fire data. This exercise was
completed for both large fire and lightning-caused simulated fires.

3.8. Defining PODs and Response Categories

PODs are a spatial representation of an area useful for summarizing risk in a meaningful
operational fire management context. PODs can also identify priority fuel treatment projects, within a
given POD or along the seams between PODs with different risk levels and response categories. PODs
can be spatially delineated using coarse approximations like 6th level sub-watersheds, or with more
refined fire operation features such as ridgetops, waterbodies, roads, barren areas, elevation changes,
or major fuel changes. Areas of significant change in wildfire hazard and risk could also inform POD
boundary decisions. Determining POD boundaries is an iterative process driven by questions such
as how fire would be managed within the area, how and why response might be different within a
given area, and whether the POD size is consistent with a realistic scale of fire management operations.
Here we use PODs as the spatial unit of analysis for strategic response zones.

POD boundaries are not intended to be set-in-stone, but rather an approximation of an area that
would be used to manage fire. For instance an area may have multiple roads that could serve as control
points, any of which could be used operationally rather than the specific road selected to form the POD
boundary. Some mapped boundaries may not be an ideal boundary in the real world, for instance a
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narrow ridge might not under some conditions be an effective barrier to spread or a safe location to
place firefighters. It is critical therefore that PODs are developed with local knowledge including fire
specialists, fire and fuel planners, GIS specialists, and resource specialists, along with leadership. POD
delineation may also entail working with neighboring landowners, particularly with respect to how
fires might be managed across boundaries.

To demonstrate, we drill down and use a set of 147 PODs selected according to the criteria of
having at least 10% of the area within the administrative boundaries of the Sierra National Forest,
exclusive of the Great Sequoia National Monument. We developed these POD boundaries using a
process patterned after one implemented by the local fuels planner on the Inyo National Forest (part
of the SSRA). Reflective of landscape heterogeneity, PODS varied in size and shape, with a mean
size of 4281 ha, and a median size of 3069 ha, which roughly corresponds to 2–3 PODs per 6th level
sub-watershed. Note that the PODs we use here for purposes of demonstration may be updated by the
Forests in the future, i.e., POD boundaries are not necessarily a finished product. In fact, as a design
feature POD boundaries should be flexible, for instance in response to significant fuel changes after a
large disturbance event.

Lastly, we define our schema to assign each POD to one of the three aforementioned response
categories. This categorization is based on the combination of in situ risk and source rick cNVC
calculations. We use cNVC rather than eNVC because incident response decisions are ultimately
conditional on the occurrence of a fire. By contrast, eNVC values that incorporate the probability
of burning might be quite useful for prioritizing PODs for mechanical fuel treatment or prescribed
burning. Our schema uses a simple breakdown that sums cNVC within each POD and determines
whether the POD-level risk total represents a net loss (´) or a net benefit (+). Other categorization
schemas could be defined, for instance using alternative numerical thresholds for assignment based on
cNVC values. Table 3 summarizes our assignment of categories based on net loss/benefit calculations.
If in situ risk and source risk are a net loss, the POD is assigned “protect.” If in situ risk and source risk
are a net benefit, the POD is assigned “maintain”. The “restore” category is assigned where in situ risk
and source risk are mixed.

Table 3. Schema for assigning Potential wildland fire Operational Delineation (POD)-level response
categories based on in situ and source risk calculations.

Response Category In Situ cNVC Source cNVC

Protect ´ ´

Restore
´ +
+ ´

Maintain + +

4. Results

4.1. Historical Wildfire Occurrence

The historical annual number of large fires, mean large-fire size, and annual area burned varied
widely by FOA (Table 4). A general trend of high numbers of large fires and annual area burned for
FOAs in the lower elevations is apparent (e.g., FOAs 1, 2, and 7). However, FOAs covering higher
elevations and those on the eastern side of the Sierras tend to have fewer fires and typically burn
less area annually. FOA 3 is an exception to this trend, with an average fire size of 2437 hectares and
9212 hectares burned annually (per million hectares). Overall, FOA 1 ranks highest in terms of number
of fires and annual area burned. FOA 7 ranked second for number of large fires, but on average those
fires burned less area on a relative basis (10,264 hectares). FOA 4 had the lowest number of large fires
(2.27) and burned the least number of hectares annually (1975). The wide range of historical occurrence
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shown in Table 4 underscores the need for distinct FOAs for fire modeling in diverse geographic areas
with highly variable fire histories.

Table 4. Summary of historical mean annual number of fires per million hectares, mean size of large
fires, and mean large-fire annual area burned per million hectares by fire occurrence area (FOA).

FOA Annual Number of Large Fires
(per Million Hectares)

Mean Large-Fire Size
(Hectares)

Annual Area Burned
(per Million Hectares)

1 14.55 1010 14,696
2 7.64 1383 10,559
3 3.78 2437 9212
4 2.27 869 1975
5 5.71 770 4394
6 3.51 923 3240
7 11.07 927 10,264
8 2.42 1743 4221

4.2. Historical Weather

Our historical weather analysis yields two files used by FSim for simulating historical weather
and determining the weather characteristics that produced large fires historically, the FDist and the
FRISK files. The FDist file provides FSim with logistic regression coefficients that predict the likelihood
of a large fire occurrence based on the historical relationship between large fires and ERC and tabulates
the distribution of large fires by large-fire day. A large-fire day is a day when at least one large fire
occurred historically. The information contained in the FDist file is summarized by FOA in Table 5.
On average, the majority of large fires occur on a single day, however, in some FOAs there is a greater
chance of having multiple large-fire starts on a single day. FOAs 1, 2, and 8 have the highest likelihood
of more than one fire occurring, with average number of large fires per large-fire day of 1.32, 1.15, and
1.13, respectively.

Table 5. Logistic regression coefficients and mean number of large fires per large-fire day, summarized
by fire occurrence area (FOA).

FOA
Logistic Regression Coefficients Mean Number of Large

Fires per Large-Fire Daya b

1 ´6.406 0.047 1.32
2 ´6.526 0.040 1.15
3 ´13.091 0.082 1.04
4 ´7.342 0.034 1.01
5 ´7.478 0.032 1.08
6 ´6.769 0.025 1.06
7 ´4.545 0.026 1.09
8 ´10.359 0.060 1.13

The logistic regression coefficients together describe large-fire day likelihood P(LFD) at a given
ERC-G as follows:

P pLFDq “
1

1` e´a ` p´b ˆERCpGqq

where a and b are listed in Table 5.
The FRISK file captures and summarizes weather information from the RAWS station. Specifically,

ERC values and descriptive statistics for each day of the year are compiled for all years of available
record. Using the mean ERC-G value corresponding to each Julian day of the year, we compare ERC-G
between the four RAWS stations used in the FSim fire modeling (Figure 5). The two stations west of
the Sierra crest—Trimmer and Mount Elizabeth—show very similar mean ERC-G values throughout
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most of the year. The stations to the east have less seasonal variability. The weather module in FSim
uses these daily ERC-G values together with percentile ERC-G to simulate thousands of historical
weather years. Additionally, wind data described as the joint probability of wind speed and direction
are summarized by month in the FRISK file and sampled at random by FSim and combined with
ERC-G data to create thousands of simulated weather scenarios.Forests 2016, 7, 64  14 of 22 
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Figure 5. ERC-G by Julian day for each of the four RAWS locations used in fire modeling.

4.3. Wildfire Simulation

FSim produced wildfire hazard results for each FOA including burn probability and conditional
flame length probability grids. We combined the eight FOAs using the calculations described above to
produce integrated maps of wildfire hazard for the entire fire modeling area. Burn probability in the
risk assessment area ranges from less than 0.001 (1 in 1000 odds) to 0.05 (1 in 20 odds) at the highest
(Figure 6). The highest burn probabilities are typically found on the western side of the Sierra crest,
predominately in the zone where vegetation transitions from grass and shrub to timber. These results
mimic historical patterns of large fires observed in the area. Mean annual burn probability is 0.007
(1 in 142 odds).

Conditional flame-length probabilities are mapped for the assessment area in Figure 7. These
maps indicate the likelihood of flame-lengths at each intensity level and their associated spatial
distribution, as influenced by spread direction and variability in wind speed and direction as well
as fuel moisture. Grid values range from 0 to 1 in each panel and are mapped with grey for lower
probabilities to red for values closer to 1. Note it is these values, rather than burn probabilities, that are
used in cNVC calculations, as described in the methods section. Flame lengths are lowest in the valley
bottoms and lower elevations where vegetation is typically shorter (i.e., grass and grass/shrub) and
along the Sierra crest in the alpine zone where vegetation is shorter and fires tend to burn under very
moderate conditions. Flame lengths are greatest in the shrub and timber fuels west of the Sierra crest
and in the northeastern shrub fuel models.

In addition to wildfire probability and intensity grids, FSim produces polygon shapefiles of all
fire perimeters generated in the simulation. Perimeters are used in the risk source calculations. Table 6
summarizes large fire (to reiterate, greater or equal to 100 ha) results from the final fire perimeters
originating within a given FOA. Consistent with the historical occurrence, FOA1 had the greatest
number of large fires (9.61) but second-greatest area burned by large fires at 21,402 hectares annually.
FOA7 had a similar number of large fires annually, but those fires were much smaller and resulted
in significantly less area burned (9808 hectares). Just as for historical occurrence, FOA4 had the least
number of fires (1.92) and the lowest annual area burned by large fires (3960 ha). Despite the low
number of annual large fires and moderate annual area burned, FOA3 had the largest mean large-fire
size at 4466 ha, which is also consistent with the historical occurrence.
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Table 6. Large-fire simulation results summarized by fire occurrence areas (FOA).

FOA Annual Number of Large Fires
(per Million Hectares)

Mean Large-Fire Size
(Hectares)

Annual Large-Fire Area Burned
(per Million Hectares)

1 9.61 2228 21,402
2 7.99 2963 23,685
3 3.64 4466 16,237
4 1.92 2066 3960
5 5.46 1300 7092
6 3.25 1481 4814
7 9.15 1072 9808
8 2.42 2242 5420

4.4. In Situ Risk Calculations

Figure 8 shows cNVC results across the assessment area, with beneficial effects shown in blue
and negative effects in warmer colors like orange and red. Much of the timber fuel in the middle of
the assessment area and the shrub fuel along the northeastern portion experience positive conditional
fire outcomes—should a fire occur—while the majority of the western portion of the assessment area
resulted in negative outcomes. Positive fire effects are largely attributable to beneficial responses for
certain BpS models where fire had the desired effect of creating a distribution of SClass categories more
representative of desired conditions. Conversely, negative values seen along the western portion of
the assessment area represent negative outcomes to watersheds, human habitation and infrastructure,
slightly reduced by some positive outcomes due to vegetation. At first glance, it appears there are
more beneficial effects on the landscape than there are negative. However, the overall mean cNVC
value for the landscape is slightly negative at ´0.57. Pixel values of negative outcomes range from less
than zero to ´1368 while positive outcomes have a max value of 145. Although there are relatively few
areas of orange and red pixels, their values could be up to nine times the value of a beneficial outcome.
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4.5. Risk Source Calculations

Figure 9 is a plot of smoothed, NVC f ire for large-fire ignitions and large-fire cNVC. To reiterate,
NVC f ire values are conditional on large fire occurrence (unweighted by ignition probability), and
represent the cumulative impacts of each simulated large fire. This figure differs from Figure 8 in
that here we can generally identify where on the landscape fire ignitions tend to result in negative
versus positive outcomes. Specifically, aggregated over 10,000 simulations, the average result of fires
that start west of the Sierra crest is slightly negative to highly negative. The same is true of fires that
start in the northern-most portion of the assessment area, extending down into west side of the range.
Conversely, fires that start in the middle of the assessment area, where cNVC tends to be positive,
result in positive outcomes, on average. This is also the case for fires igniting along the northeastern
and eastern area-boundaries.
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4.6. PODs and Response Categories

In terms of response category assignments, 93 PODs were “protect”, 34 were “restore”, and 20
were “maintain”. The magnitude of net losses and benefits is different across POD assignments, and
across types of risk calculations (Table 7). The “protect” category has the highest conditional net
losses for both in situ and source risk calculations, as well as the highest variability. Across categories,
the absolute magnitude of mean net losses exceeds that of mean net benefits, which reflects the
susceptibility and high importance of the wildland-urban interface, among other factors. Absolute
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magnitudes for in situ risk calculations are greater than that of source risk calculations in all cases,
which simply reflects the greater number of fires included in the calculations; in situ risk includes not
only fires that ignited within a given POD, but also fires that ignited elsewhere and spread into the
given POD (i.e., in situ risk is a function of source risk from other PODs on the landscape).

Table 7. Summary statistics for POD-level in situ and source risk calculations, quantified in terms
of conditional net value change (cNVC), and broken down according to response category; values
presented in parentheses are negative.

Descriptive Statistics In Situ cNVC Source cNVC

Protect (n = 93)
Mean (54,002) (15,240)

Standard Deviation 78,540 8036
Min (563,117) (32,080)
Max (189) (91)

Restore (n = 34)
Mean 13,779 (6679)

Standard Deviation 15,937 7050
Min (9774) (24,205)
Max 56,816 608

Maintain (n = 20)
Mean 15,294 699

Standard Deviation 12,142 448
Min 1214 65
Max 44,551 1509

At least three notable patterns emerge from the POD assignments. First, unsurprisingly,
the wildland-urban interface was a major driver—of 85 PODs that contained any mapped
wildland-urban interface, 73 were assigned “protect” and 12 were assigned “restore”. None of the
PODs in the “maintain” category had any mapped wildland-urban interface. Of the PODs containing
wildland-urban interface, the average estimated population in the “restore” category was more than
two orders of magnitude lower than that in the “protect” category. This suggests that assigning the
“restore” category with some measure of tolerance for or even promotion of fire is only an option in
PODs with very low population densities.

Second, the “restore” PODs have a mean net benefit for in situ risk, but a mean net loss for source
risk calculations. Across the 34 PODs in this category, only 3 PODs had a net in situ loss, whereas
31 PODs were a net source loss. This result is principally a function of being adjacent to PODs that
fell into the “protect” category with a greater concentration of HVRAs with negative responses to
fire. That in situ results are overwhelmingly positive suggests that within-POD prescribed burning or
managing natural fire under conditions suitable to high probability of control might lead to significant
net benefits.

Third, the spatial mosaic of POD response assignments tends to follow an easterly progression
from “protect” to “restore” to “maintain” (Figure 10). Proximity to the wildland-urban interface along
the western flanks of the Forest boundary clearly plays a strong role here. So too does the potential
for “restore” PODs to act as a source of net loss to adjacent PODs within the “protect” category, as
mentioned above. “Maintain” assignments by contrast tend to be the furthest from development,
where the principal HVRAs impacted by fire are natural resources, and where fire can improve
vegetation condition. Note that there are three “maintain” PODs that abut “protect” PODs, which
suggests that the potential for local ignitions to spread beyond POD boundaries is minimal within
these specific “maintain” PODs.



Forests 2016, 7, 64 19 of 22

Forests 2016, 7, 64  19 of 22 

 

 

Figure 10. POD‐level strategic response category assignments. 

5. Discussion 

In this paper we demonstrated how state‐of‐the‐art spatial risk assessment can support spatial 

fire planning, and outlined a possible pathway for developing strategic response zones. We described 

how  two  spatial metrics  of  conditional wildfire  risk  can  be helpful  in  better understanding  and 

balancing the potential consequences of alternative responses to fire. In situ risk helps refine estimates 

of  the  consequences  if  the  fire  reached a  certain  location, and  is  reflective of  local  characteristics 

related to HVRAs, fuels, and terrain. This information can support, for instance, decisions related to 

locating control points, attempting to redirect fire spread, or assigning resources to point protection. 

Source risk provides a broader perspective of the propensity for fires that ignite in a given location 

to spread to areas with HVRAs. This can support decisions related to initial response strategies with 

information  that  is  complementary  to  local  risk  concerns, particularly where  local HVRA  effects 

might be positive but fire could spread to areas prone to loss (i.e., “restore” zones). 

We embedded the risk assessment in a broader strategic framework for response planning based 

on the conceptual Wildland Fire Management Continuum. This framework is premised on pre‐fire 

assessment  to  support  risk‐informed  decisions,  while  recognizing  the  need  for  flexibility  and 

responsiveness to changing conditions. This framework is further premised on pre‐fire assessment 

and planning in terms of features and considerations relevant to operational fire management. Hence 

the  design  of  a  spatial mosaic  of  PODs, within which we  summarized  in  situ  and  risk  source 

calculations. POD‐level  summaries  of  risk metrics  can  reduce uncertainty  surrounding  potential 

losses and benefits given large fire occurrence, and lend themselves naturally to design of fire and 

fuel management  strategies.  The  spatial  representation  of  fire  hazard  and  risk,  along with  fire 

management objectives and options, should ideally provide a valuable tool for identifying strategic 

responses to wildfire that align with land and resource objectives. 

While our  intent here  is  to  establish a basic  foundation  for  response planning,  a number of 

extensions and improvements are foreseeable or in development. The scope of fire modeling and risk 

assessment  could  be  expanded,  for  instance  simulating  only  lightning‐caused  ignitions  and 

estimating their potential size and HVRA  impacts  if unsuppressed. This approach could establish 

benchmarks for risk source loss levels against which alternative response policies could be compared. 

Strategic  response  planning  could  spatially  assign  response  categories  at  larger  scales,  in  effect 

aggregating PODs based on coarser summaries of in situ and source risk. This would not, of course, 

mandate any particular response to ignition within a given zone, but could greatly simplify strategic 

Figure 10. POD-level strategic response category assignments.

5. Discussion

In this paper we demonstrated how state-of-the-art spatial risk assessment can support spatial fire
planning, and outlined a possible pathway for developing strategic response zones. We described how
two spatial metrics of conditional wildfire risk can be helpful in better understanding and balancing
the potential consequences of alternative responses to fire. In situ risk helps refine estimates of the
consequences if the fire reached a certain location, and is reflective of local characteristics related to
HVRAs, fuels, and terrain. This information can support, for instance, decisions related to locating
control points, attempting to redirect fire spread, or assigning resources to point protection. Source
risk provides a broader perspective of the propensity for fires that ignite in a given location to spread
to areas with HVRAs. This can support decisions related to initial response strategies with information
that is complementary to local risk concerns, particularly where local HVRA effects might be positive
but fire could spread to areas prone to loss (i.e., “restore” zones).

We embedded the risk assessment in a broader strategic framework for response planning
based on the conceptual Wildland Fire Management Continuum. This framework is premised on
pre-fire assessment to support risk-informed decisions, while recognizing the need for flexibility and
responsiveness to changing conditions. This framework is further premised on pre-fire assessment and
planning in terms of features and considerations relevant to operational fire management. Hence the
design of a spatial mosaic of PODs, within which we summarized in situ and risk source calculations.
POD-level summaries of risk metrics can reduce uncertainty surrounding potential losses and benefits
given large fire occurrence, and lend themselves naturally to design of fire and fuel management
strategies. The spatial representation of fire hazard and risk, along with fire management objectives
and options, should ideally provide a valuable tool for identifying strategic responses to wildfire that
align with land and resource objectives.

While our intent here is to establish a basic foundation for response planning, a number of
extensions and improvements are foreseeable or in development. The scope of fire modeling and risk
assessment could be expanded, for instance simulating only lightning-caused ignitions and estimating
their potential size and HVRA impacts if unsuppressed. This approach could establish benchmarks
for risk source loss levels against which alternative response policies could be compared. Strategic
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response planning could spatially assign response categories at larger scales, in effect aggregating
PODs based on coarser summaries of in situ and source risk. This would not, of course, mandate any
particular response to ignition within a given zone, but could greatly simplify strategic assessment
and planning at eco-regional or larger scales. Planning efforts could integrate eNVC in addition to
cNVC values, particularly for fuel management questions where the likelihood of fire is a primary
consideration. POD-level response planning could similarly use eNVC values, for instance to prioritize
PODs for monitoring and maintenance of control features. POD features could be integrated directly
into spatial fuel treatment design, for instance to reduce fire behavior and resistance to control along
POD boundaries [32,33]. While here we took preexisting POD boundaries as fixed, future research
could examine patterns and characteristics of POD features and evaluate alternative spatial POD
designs. Lastly, in addition to risk metrics POD attributes could be characterized with indices of
suppression difficulty or resistance to control (e.g., [34]).

The assessment and planning framework introduced here has several limitations and
qualifications to note. First, large fires are low-probability, high-consequence events, with associated
difficulties in prediction and the potential for bad outcomes despite good decisions. That exact ignition
locations or fire weather conditions can’t be predicted does not mean, however, that general patterns
can’t be discerned or that alternative scenarios can’t be considered in assessment and planning efforts.
Second, the temporal scope of the risk assessment is short-term, and does not capture dynamics of
succession and disturbance through time. Periodic assessment can at least partially offset this limitation,
particularly in response to large disturbance events that might significantly alter spatial patterns of
hazard and risk. Further, as mentioned earlier, POD boundaries and categories are flexible and could
also be updated dynamically through time. Third, the fire modeling and risk assessment processes and
products are subject to a variety of uncertainties and knowledge gaps, which are extensively discussed
and characterized in reviews by Finney et al. [35], Hyde et al. [36], and Thompson and Calkin [37].
The assessment and planning process described here is premised on pairing appropriate modeling and
decision support approaches with the type of uncertainties faced [16], and more broadly on iterative
calibration, refinement, and reliance on local expert knowledge and experience.

To summarize, consider that fire management objectives are essentially a vector, or a means,
by which underlying land and resource objectives can be achieved. Fire management actions and
alternatives therefore must be evaluated in light of their impacts on desired conditions. The framework
and process we introduce is one vehicle by which fire planning and ultimately fire response could
be enhanced and directly tiered off of HVRAs and related concerns outlined in land and resource
plans. Leveraging spatial risk assessment methods with fire planning helps more strongly infuse
risk management principles into fire management decision making, and increases the likelihood of
attaining the goals outlined in the Cohesive Strategy [8].
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