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Regression  modeling  of  biomass  estimates  from  an  airborne,  multiple  return  lidar  system  using regional
biomass  allometric  equations  differs  significantly  from  those  using  national  scale  Jenkins  allometric  equa-
tions with  respect  to the  amount  of variation  explained,  variables  selected  and  variables  of  importance.
Our  discrete  return  lidar  data  were  collected  in  September  2007  at 121  plots  in a  conifer  dominated
forest  site  in  the  Sierra Nevada  mountains  that  include  a  full range  of  forest  density.  We  regressed  field
plot-level  estimates  of biomass  derived  from  field  data  and  two different  allometric  equations  with  a
range  of  lidar  metrics.  We  compared  regression  performance  across  eight  models:  (1)  point  clouds  alone,
(2) point  clouds  with  an empirical  relationship  between  DBH  and  height  (i.e.,  volume),  (3)  individual
tree-level  metrics,  and  (4)  all  data  combined,  and  across  two allometric  equations  –  (A) Forest  Inventory
Analysis  (FIA),  and  (B)  Jenkins.  In  lower  biomass  plots,  the reference  above  ground  biomass  (AGB)  esti-
mates  from  regional  allometric  equations  and Jenkins  equations  were  closely  related;  in plots  with  large
biomass  they  were  different.  This  finding  suggests  that published  equations  from  large  biomass  plots  are
either  not  readily  available  or less  represented  in  national  scale  allometric  equation  compiling.  Models
using  reference  AGBs  calculated  from  regional  allometric  equations  performed  much  better  than  those
using reference  AGBs  calculated  from  Jenkins  allometric  equations.  In these  cases  adjusted  R2 improve-
ment  ranged  from  0.07  to  0.11.  The  regression  model  that used  regional  allometric  equations  with  lidar
metrics  and  individual  tree  data  provided  the  best  overall  R2 (0.79)  with  lowest  RMSE  suggesting  that
in  most  conditions  regional  biomass  equations  should  be  preferred  over  national  equations.  The  inclu-
sion  of  volumetric  metrics  shows  that  lidar  variables  are  more  sensitive  to the  reference  AGBs  calculated
from regional  allometric  equations,  and  care  should  be  taken  when  substituting  regional  equations  using

national  scale  compiled  allometric  equations  in regional  biomass  studies.  In  addition,  consistent  with
previous  studies,  the mean  height  of  individual  trees  identified  was  chosen  by  both  models  with  both
reference  AGBs  calculated  from  regional  allometric  equations  and  those  calculated  from  Jenkins  equa-
tions,  supporting  the  need  to  identify  individual  trees  for  biomass  prediction.  Based  on these  results,  we
conclude  that  the  selection  of  allometric  equations  can  influence  the  capacity  of lidar  data  to  estimate
biomass  significantly,  and  a careful  selection  of  allometric  equations  is required  for  regional  lidar  biomass

studies.

. Introduction

Measurement of above ground biomass (AGB) at local, regional

nd global scales is critical for estimating global carbon storage and
ssessing ecosystem response to climate change and anthropogenic
isturbances (Hese et al., 2005; Ni-Meister et al., 2010). While opti-
al and radar sensors show potential to provide biomass estimates,
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erkeley, CA 94720-3114, USA. Tel.: +1 510 642 7272; fax: +1 510 642 1477.
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lidar remote sensing is generally regarded as a more accurate
method because lidar sensors provide more detailed information
on canopy structure with the added dimension of vertical height
(Chen et al., 2006; Zhao et al., 2011; Yao et al., 2011). Many previ-
ous studies have demonstrated the success of lidar estimates of AGB
based on a relationship between lidar canopy height metrics (e.g.,
mean canopy height, canopy height percentiles, Height of Median

Energy (HOME) and field-measured reference AGB calculated from
regional or national scale allometric equations (Anderson et al.,
2006; Lefsky et al., 1999, 2005; Lefsky, 2010; Hyde et al., 2007).

Based on the footprint size and the manner in which the lidar
signal is recorded from a target, lidar systems used for biomass
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tudies generally fall into two categories: large footprint full wave-
orm systems (e.g., spaceborne Geoscience Laser Altimeter Systems
GLAS); Airborne Laser Vegetation Imaging Sensor (LVIS)) and small
ootprint multiple discrete-return lidar systems. Large footprint full
aveform lidar systems have a footprint diameter of more than 5 m

nd thus are more suitable for investigations at larger scale, but lack
he detailed characterization at individual tree level (Kwak et al.,
010). In contrast, small footprint, discrete return lidar instruments
ave a much narrower beam (i.e., less than 50 cm), and are gener-
lly believed to be able to provide more accurate biomass estimates
ecause information at individual tree level can be characterized.
et the application of small footprint lidar to large spatial scale
tudies has been relatively limited due to the necessarily small spa-
ial coverage. Therefore, small footprint, multiple return lidar was
enerally selected to study regional biomass distribution.

The vast majority of research describing the use of lidar data
o estimate biomass uses statistical analysis to infer a relation-
hip between ground-based AGB, developed from field data and
llometric equations, and lidar data. In the USA, reference AGB is
ypically calculated in either of two ways: using a national model
pproach (e.g., those provided by Jenkins et al., 2003, 2004) or
sing a regional model approach (e.g., those provided by the USFS
orest Inventory Analysis (FIA) program). The Jenkins allometric
quations were originally developed for national level biomass
stimation by refitting the data predicted from various allomet-
ic equations found in the literature for different tree species. In
ontrast, regional allometric equations were selected from pub-
ished papers based on local tree studies, and thus are more
uited in detailed regional AGB estimates. While regional allometric
quations are widely used for regional biomass estimates, Jenkins
llometric equations have also frequently been adopted when a
pecific allometric equation that matched closely to the study site
s not readily available (Hyde et al., 2007; Kim et al., 2009; Zhao
t al., 2009; Popescu, 2007; Popescu et al., 2011). In such stud-
es, reference AGB calculated from Jenkins allometric equations
s assumed to be accurate enough for regional biomass studies.
owever, these two sets of allometric equations differ significantly

n two aspects. First, the Jenkins allometric equations have only
ne explanatory variable, DBH, while regional allometric equations
ommonly require two parameters: DBH and height. Second, the
enkins allometric equations represent a generalization of avail-
ble regional allometric equations, and their application to regional
cale studies depends on whether the regional allometric equa-
ions for some species are representative of an averaged condition
f those species across the country. As a result, the influence of the
election of allometric equations on regional AGB studies needs to
e carefully examined, rather than replacing regional allometric
quations with national scale allometric equations directly or vice
ersa.

These issues have been noted previously. For example, Popescu
t al. (2011) discussed the errors associated with developing
ational scale equations by compiling species- and site-specific
quation that may  be biased in favor of species for which pub-
ished equations exist. Zhou and Hemstrom (2010) reported that
here are two main concerns about the Jenkins allometric equations
hen they are used for finer scale biomass analysis. First, broadleaf

ree species groups may  lead to biased biomass estimates; Sec-
nd, the Jenkins allometric equations have only one explanatory
ariable: DBH and may  not be sufficiently accurate for finer scale
iomass analysis (Zhou and Hemstrom, 2010). Melson et al. (2011)
uantified the model-selection uncertainty for five most numerous

ree species in six counties of northwest Oregon, USA, and found
hat model-selection uncertainty is potentially large enough that it
ould limit the ability to track forest carbon with the precision and
ccuracy required by carbon accounting protocols. However, we
now of no studies that investigate how the selection of allometric
 Meteorology 165 (2012) 64– 72 65

equations will affect the lidar metric selection and biomass models
developed for biomass mapping at regional scales. Without enough
knowledge of the influence of mixed use of allometric equations
on lidar metric selection and AGB regression modeling, a biased
understanding of lidar systems’ utility on AGB estimates will be
inevitable.

To better understand the role allometric equations selection
can play on the regional biomass estimates with a small footprint,
multiple returns lidar system, this study aims to: (1) quantify the
difference in the regional biomass estimates calculated from these
two sets of allometric equations; and (2) investigate how the selec-
tion of allometric equations influence lidar regression modeling
(e.g., variable selection, variation explained) of AGB in a sample
site in Sierra National Forest, CA. While this is only a case study for
a single region, findings based on this sample study could also be
relevant to forests in other regions.

2. Methodology

2.1. Study area

The Sugar Pine study area is located northeast of Oakhurst,
CA, and covers approximately 36.1 km2 (Fig. 1). This area is
topographically complex with elevations ranging from 758 m to
2652 m.  Primary tree species include (in order of abundance):
Calocedrus decurrens (Incense Cedar), Abies concolor (White Fir),
Pinus ponderosa (Ponderosa Pine), Pinus lambertiana (Sugar Pine),
Sequoiadendro giganteum (Giant sequoia), Quercus (Black Oak),
Quercus ssp (Live oak), Cornus nuttallii (Mountain Dogwood) and
Ainus rhombifolia (White Alder). Of all the species, conifers comprise
89.57% and the remaining 10% are deciduous species, primarily
black oak and live oak. The composition of these primary species
shows a general pattern for all plots as a whole, and within each sin-
gle plot, species composition among plots may  vary significantly.
For example, some plots can be deciduous dominant.

2.2. Field inventory

A total of 121 field inventory 0.05-acre plots were used in this
study. Each plot covers 12.62 m radius area around an accurately
located plot center. The first plot was  randomly chosen and the fol-
lowing plots are placed on a 500 m grid. When a plot was  less than
12.62 m from landing or road surface, it was moved 25 m in a ran-
domly chosen cardinal direction. Plots located in inaccessible areas
or on private land were not surveyed. Within each plot forest struc-
tural attributes, including species, diameter at breast height (DBH),
tree height and height to live crown base (HTLCB) were recorded.
The plot was  also photographed from four vantage points.

2.3. Plot-level AGB estimation

Plot level AGB (including leaves branches and stems) was esti-
mated using two sets of allometric equations: Jenkins allometric
equations and regional allometric equations used by the FIA (Forest
Inventory Agency) for the state of California in the pacific north-
west region (Waddell and Hiserote, 2005). For each plot, AGB was
calculated for each single tree and then were aggregated for each
plot.

2.3.1. Jenkins allometric equations

The Jenkins allometric equations model (Jenkins et al., 2003,

2004) estimates total AGB based on tree diameter, and take the
general form as follows:

B = exp(b0 + b1 ln(DBH)) (1)
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here B: total aboveground biomass (kg), DBH: diameter in cen-
imeter (cm) at breast height, ln: natural log base “e” (2.71828), b0,
1: coefficients.

There are 10 AGB equations available associated with 4 hard-
ood species groups and 5 softwood species group, and 1 woodland

roup.

.3.2. Regional (FIA) allometric equations
The FIA program uses separate sets of equations for major AGB

omponents: bole, branch and bark. Tree AGB is calculated and
caled from volume estimates for incense cedar as an example in
A region.

 = BOLE + BRK + BCH

A = BDH2 × 0.005454154

ERM = ((1.0333 (1.0 + 1.382937

× exp
(

−4.015292
(

DBH
10.0

)))))
(BA + 0.87266)

− 0.174533)

F = 0.225786 + 4.44236
(

1
HT

)

V4 = CF × BA × HT
VTS = CV4 × TERM
BA − 0.087266

OLE = CVTS × Wd
e study area.

For biomass from bark:

BRK = exp(−13.3146 + 2.8594 ln(DBH)) × 1000

For biomass from branch:

BCH = 0.199 + 0.00381 × DBH × HT (2)

where B: biomass of the tree, including tree stem (bole), branches
and barks (kg), BOLE: biomass of the stem (kg), BRK: biomass of
the bark (kg), BCH: biomass of the branches (kg), BA: basal area
(ft2), CF: cubic from factor, TERM: intermediate parameter, CV4:
volume from a 1-ft stump to a 4-in. top (cubic feet), CVTS: total
stem volume from ground to tip (cubic feet), Wd: wood density
(kg/ft3), HT: height of trees (ft).

Regional allometric equations are derived mainly from field
studies and are thus more suitable for local scale studies. In cases
that there are no allometric equations for some species, users nor-
mally substitute the equations for species that have similar growth
forms. Note that regional allometric equations are selected by users,
and thus the consistency of biomass estimates among regions and
even trees of a single species may  not be stable.

2.4. Airborne lidar data processing

Lidar data was  collected in September 2007 using an Optech
GEMINI Airborne Terrain Mapper (ALTM) mounted in a twin-engine
Cessna Skymaster. The ALTM emits pulses of near-infrared light
(1047 nm)  at a rate of 100 kmhz. A maximum of four returns were
recorded for each pulse. The mean point density within our study
area averaged 6 points per m2.
The point clouds were classified into two  classes: ground returns
and aboveground returns by the National Center for Airborne Lidar
Mapping (NCALM). The Digital Terrain Model (DTM) was  generated
using the classified ground point and has a spatial resolution of 1 m
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Table  1
Regression model cases tested.

Equations Data inputs
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Sierra Nevada region. The algorithm adopts a top-to-bottom region
growing approach that segments trees individually and sequen-
tially from the tallest to the shortest from a lidar point cloud. After
the height and canopy radius were derived, tree-level metrics (e.g.,
Point clouds Point c

Biomass (FIA) A1 A2 

Biomass (Jenkins) B1 B2 

Guo et al., 2010). The height of aboveground returns is computed
y subtracting the DTM to remove the slope effects on the vertical
istribution of aboveground returns.

There are two primary approaches for estimating biomass using
idar metrics: using plot-scale metrics to estimate biomass, and
sing individual trees (Goerndt et al., 2010). For the first approach,

idar metrics (e.g., mean canopy height, standard deviation of
eturns, canopy percentiles, etc.) are calculated from either an
nterpolated canopy height model (CHM) or from the raw point
louds. These metrics are then used to build up a regression rela-
ionship with ground reference biomass estimates. The second
pproach begins by identifying each individual tree using the CHM
r the raw point cloud, then the biomass for each individual tree
re estimated, and these are aggregated at the plot scale. Simi-
ar to biomass estimation at the area-level, lidar metrics from the
ndividual tree level such as the sum of heights of each individ-
al tress can also be used in a regression relationship. The second
pproach has resulted in higher accuracy as reported in the litera-
ure, likely because lidar metrics are derived at the individual tree
evel (Popescu et al., 2003; Hyyppä et al., 2001; Persson et al., 2002;
wak et al., 2007). Although our primary focus was not to compare

hese two approaches, we combined these two approaches in sep-
rate models to investigate how the regression modeling performs
n both cases, and when combined.

.4.1. Lidar metrics from point clouds
All four returns corresponding to each plot were clipped from

he lidar dataset and several groups of variables were derived from
he height distribution of canopy returns. To avoid the inclusion of
round returns, a 1 m threshold was used to remove returns close to
he ground from canopy returns. Height metrics were divided into
our groups: statistical metrics, canopy height percentiles metrics,
anopy transmittance metrics, and foliage profile metrics (Table 2).
tatistical metrics include maximum, mean, standard deviation,
urtosis, skewness, and coefficient of variation (CV). Canopy per-
entile metrics are calculated from 10th, 20th up to 90th. Canopy
ransmittance metrics are the ratio of returns at each canopy per-
entile height over the total number of returns.

Lovell et al. (2003) described the methodology to derive an
pparent foliage profile from a small footprint lidar. The gap proba-
ility from the top to a given height, z, is estimated by the following
quations.

gap = 1 − {#zj|zj > z}
N

(3)

(z) = − log(Pgap(z)) (4)

here #z is the number of hits down to a height z above the ground
nd N is the total number of independent lidar shots. The apparent
oliage profile is then given by Eq. (4).  To test the utility of apparent
oliage profile in biomass, three metrics were selected: maximum
oliage area volume density, height of maximum foliage volume
ensity and distance between top of the apparent foliage profile and

eight at maximum foliage volume density. Maximum foliage area
olume density reflects the foliage density condition for trees with

 specified region, and height of maximum foliage volume density
s the height where trees have the maximum foliage density. The
istance between top of the apparent foliage profile and height of
 + volume Individual trees Combined

A3 A4
B3 B4

maximum FAVD could be indicative of the pattern of foliage in the
upper crown.

The literature has shown that a volume related measure can
help in predicting biomass. For example, Ni-Meister et al. (2010)
reported that wood volume is a good predictor of plot level biomass,
particularly for conifer forests. Since lidar only provides height
related metrics, and there are no available lidar metrics that directly
relate to basal area, in this study we integrated the simplified
relationship between DBH and height into the canopy percentile
height metrics, and produce volumetric metrics in hope of testing
the utility of this empirical relationship in predicting the biomass
estimates. Specifically, we  built an empirical relationship from the
collected field data using the DBH and tree height for all measured
trees (a total of 1248 trees) in our study area. The equation is as
follows:

DBH = 4.37 + 1.81 × HT (5)

Fig. 2 shows that DBH and height of trees in our study area
correlate well, suggesting that this simplified relationship may
help improve the regression modeling between lidar metrics and
reference biomass. For example, for height at P 10 (Table 2), the
volumetric metric is calculated as follows.

V 10 = P 10 × (P 10 × Eq. (5))2 (6)

2.4.2. Lidar metrics from individual trees
A variety of methods are available for isolating individual trees

from the CHM (Popescu et al., 2003; Hyde et al., 2007; Persson et al.,
2002; Kwak et al., 2007). In this study we used a newly devel-
oped method developed by Li et al. (2012) to isolate individual
trees from the point cloud, which is found to generate superior
result with the accuracy of 94% in the mixed conifer forests in the
Fig. 2. The general relationship between DBH and height at the individual-tree level.
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Table  2
Metrics derived from the height distribution of lidar data.

Lidar metrics from point clouds Lidar metrics from individual tree detection

Label Description Label Description

Max  ht Top height within a plota Ind sum ht Top height within a plot
Mean  ht Mean of heights Ind mean ht Mean of heights
Std ht Standard deviation of heights Ind sd ht Standard deviation of heights
Skew ht Skewness of heights Ind skew ht Skewness of heights
Kur ht kurtosis of heights Ind kurt ht Kurtosis of heights
CV  ht Coefficient of heights In sum r Sum of canopy radius
QMCH Quadratic mean of height Ind mean r Mean of canopy radius
Canopy  cover Transmittance at 1 meters above ground Ind sd r Standard deviation of canopy radius
Max fp Maximum foliage profile densityc Ind skew r Skewness of canopy radius
Max fp height Height at Max fp Ind kurt r Kurtosis of canopy radius
Top Maxfp ht Distance between tree top and the height at Max fp Ind num treee Number of trees
P  10.  . .P  90 Percentile heights
D 10.  . .D 90 Transmittance at each percentile heightsb

V 10.  . .V 90 Volumetric metrics at each percentile heightd

a Height and radius related metrics are in the unit of m.
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3.2. Multiple linear regression models

The adjusted R2 and RMSE based on 10-fold cross validation test
for regression modeling for all models are shown in Table 3, and

Table 3
Results of multiple linear regression models for predicting biomass.

Model Response variable AdjR2 RMSE
(Mg/ha)

A1 Biomass (FIA) 0.69 285
A2  Biomass (FIA) 0.72 268
A3  Biomass (FIA) 0.71 355
b Transmittance related metrics are unitless.
c Foliage profile related metrics are in the unit of m2/m3.
d Volume related metrics are in the unit of m3.
e The number of trees metric is unitless.

ean height, skewness of heights of all individual trees with a plot)
ere calculated (Table 2).

.5. Statistical models

Multiple linear regression method was the primary statisti-
al method used to study the relationship between biomass and
redictive variables from lidar data (Hudak et al., 2006; Goerndt
t al., 2010). We  compared the regression performance across eight
odels: (1) point clouds alone, (2) point clouds with an empirical

elationship between DBH and height (i.e., volume), (3) individual
ree-level metrics, and (4) all data combined, and across two  allo-

etric equations – (A) FIA, and (B) Jenkins. This resulted in eight
odel results, which are summarized in Table 1.

.6. Multiple linear regression

To correct for both non-normality and heteroscedascity (Hudak
t al., 2006), the natural log transformation was generally applied
o the response variable (i.e., biomass). We  also tested the model
ithout natural log transformation on the response variable.

he variable selection was conducted using a subset regression
echnique that using an exhaustive search. Specifically, we used
egsubsets function in the leaps Package for R (R Development Core
eam, 2010). The model statistic used to determine the best subsets
as Mallows (1973) Cp statistic which is defined as follows:

p = SSE
MSEfull

− N + 2P (7)

here SSE is the error sum of squares of the reduced model with
 parameters (including the intercept), MSE  is the mean square
rror of the full model, and N is the number of samples. The mod-
ls which yield the lowest values of Cp will tend to be similar to
hose that yield the highest values of adjusted R-squared. The Cp
riterion tends to favor models with fewer parameters and was  thus
elected to determine optimal model for our analysis. To correct for
ias in natural log-transformed allometric equations, we  adopted

 correction factor (Sprugel, 1983).

To compare the performance of regression models, we used two

riteria: adjusted R2 and root mean squared error (RMSE) based on a
0-fold cross validation analysis. To assess the contribution of each
elected metrics to the optimal model, we used the lmg method in
ackage relaimpo, which is a metric that decomposes adjusted R2
into non-negative contributions that automatically sum to the total
R2.

3. Results

3.1. AGB comparison: Jenkins allometric equations vs. FIA
regional allometric equations

There were large differences in biomass density statistics
between the two  allometric equations. The range of biomass den-
sity in our plots is large: 38.6–1132.9 Mg/ha for Jenkins allometric
equations compared to 28.8–1442.0 Mg/ha for regional allometric
equations. The lower values at 2.5th percentile are 71.4 Mg/ha and
51.3 Mg/ha respectively and the upper values at 97.5th percentile
are 645 Mg/ha and 667 Mg/ha for the Jenkins allometric equations
and regional biomass equation respectively. The smaller range of
biomass density derived from the Jenkins allometric equations may
be attributed to the fact that the Jenkins equations reflects the
average condition of forest biomass across the country.

The relationship between above ground biomass derived from
the Jenkins allometric equations and from the regional allomet-
ric equations is shown in Fig. 3. For plots with low biomass, AGB
from these two sets of allometric equations are more closely corre-
lated while AGB estimates from regional allometric equations for
large biomass plots are significantly less that those derived from
the national-scale allometric equation.
A4  Biomass (FIA) 0.79 252
B1 Ln (Biomass (Jenkins)) 0.62 260
B2 Ln (Biomass (Jenkins)) 0.62 266
B3  Ln (Biomass (Jenkins)) 0.62 253
B4 Ln (Biomass (Jenkins)) 0.68 211
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by the fact lidar-derived variables are directly related to height,
while reference AGBs calculated from either Jenkins allometric
ig. 3. Biomass comparison derived from two allometric equations. The dashed line
s  the 1:1 line.

ig. 4 shows the variables selected and the decomposed adjusted R2

or each variable. Models with higher adjusted R2 and low RMSE are
ndicative of better predictive ability of biomass with lidar-derived
ariables. Within model type (‘A’ or ‘B’), higher R2 values corre-
pond to lower RMSE. Models A1–A4 (regional) performed better
han B1–B4 (national), improving R2 by 0.07–0.11, suggesting that
n most conditions regional allometric equations are preferred. A4

as the best model with the highest adjusted R2 (0.79) and the
owest RMSE for all ‘A’ models (252). The slightly higher cross vali-
ation RMSE for A1–A4 as compared to B1–B4 models can possibly
e explained by the fact that estimates of above ground biomass
stimates calculated from regional allometric equations are gener-
lly higher than those calculated from Jenkins allometric equations
Fig. 4).

The results shows that models with all lidar variables (i.e.,
odel A4 and model B4) produced the highest adjust R2. The vari-

bles selected by model A4 based on regional biomass equations
nclude mean of heights derived from individual tree identifica-
ion, volumetric metric at 90th percentile height, mean of heights
erived from point cloud, 50th percentile height, and transmit-
ance at 50th and 20th percentile heights in which the lidar height
ariables explained the most variance, followed by two  trans-
ittance variables. Similarly, four lidar height variables (mean of

eights derived from individual tree identification, 70th percentile
eight, volumetric metric at 70th and 50th percentile height, height
t maximum foliage profile density), one transmittance and one
anopy radius (transmittance at 1 m above ground and sum of
anopy radius derived from individual tree identification, respec-
ively) were selected by model B4 based on the Jenkins allometric
quation. In both cases, mean height of individual trees explained

 large proportion of variation. This is consistent with previous
tudies showing that individual tree results have better predictive
ower for biomass estimation.

Without the addition of volumetric variables, model A1
xplained more variance than B1 (0.69 vs. 0.62). The lidar met-
ics optimized for regression modeling differed significantly. A1
elected six height variables, two foliage profile variables and
ne transmittance variable, in which height related variables con-
ributed 92% of the explained variation. In comparison, maximum

oliage profile and canopy cover variables together explained 21%
f the explained variation in B1 model, and height related variables
ontributed to the rest of explained variation.
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Adopting an empirical relationship between DBH and height
explained more variation: model A1 (0.69) was improved to model
A2 (0.72) when reference AGB estimates from regional allometric
equations was used, likely because lidar provided primarily infor-
mation related to heights, and integrating an empirical relationship
into lidar height metrics can lead to a better correlation with
reference AGB estimates calculated from volume based regional
allometric equations. The Jenkins allometric equations, however,
have only one parameter (i.e., DBH) as input. Consequently, the
simple empirical relation is not able to improve the correlation
between lidar metrics and reference AGB estimates with the Jenk-
ins allometric equation. When volumetric metrics were included,
four such metrics contributed evenly to the biomass regression
modeling with reference AGB calculated from regional allomet-
ric equations, and other two transmittance metrics and a foliage
profile related variable, distance between tree top and the height
at maximum foliage profile density, explained very few varia-
tions. When the Jenkins equations were used to calculate reference
AGB, no volumetric metric was  adopted and the 50th percentile
height was  the most significant variable. Both model A2 and model
B2 selected transmittance variables. Further, model A2 explained
much more variance than B2 (0.72 vs. 0.62). The empirical relation-
ship between DBH and height from field data only improved the
relationship between lidar metrics and reference AGB calculated
from the regional allometric equation.

Model A3 and model B3 both chose the metric sum of heights
derived from individual tree identification and standard deviation
of heights derived from individual tree identification. Also the refer-
ence AGB calculated from the regional allometric equations showed
a better correlation with lidar metrics than reference AGB  cal-
culated from the Jenkins allometric equations because reference
AGB using regional allometric equations provided more accurate
biomass estimates. The variance explained for A3 is 0.71 which is
much higher than 0.62 explained by model B3.

4. Discussion

Our results show that published biomass allometric equations
from regional and national sources can give substantial variation in
plot-level biomass estimates, especially in denser plots. The varia-
tion may  suggest that large biomass plots are not well represented
in the national scale allometric equations derivation due to the
fact that it is more time consuming and labor intensive to harvest
large biomass plots. In spite of the fact that the biomass density for
two sets of allometric equations hold similar patterns statistically,
the differences in the biomass density are obvious, indicating the
importance of assessing the influence of varied allometric equa-
tions in predicting biomass with small footprint lidar systems.

Since both sets of allometric equations employ DBH as input,
and the regional allometric equations use one more additional vari-
able (i.e., height), the difference between biomass density at the
plot level mainly reflects the aggregated variation of height for all
individual trees in a plot. As a result, the comparison of AGB using
those two  sets of allometric equations shows that tree heights in
our study area may  generally be higher than the average heights of
the same species group across the country.

In models with reference above ground biomass calculated from
regional biomass equations, the integration of a simplified, empir-
ical relationship between DBH and height generally improved the
performance of the regression models. Its utility can be explained
equations or regional allometric equations share a common input,
DBH. The simplified transformation from height metrics to volu-
metric metrics made the association between reference AGBs and
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idar-derived metrics more direct and close. However, the addi-
ion of this empirical relationship did not help in models with AGB
alculated from Jenkins equations.

The models using reference AGB calculated from regional
iomass equations performed better than those using Jenkins equa-

ions. Models with higher adjusted R2 and low RMSE are indicative
f better predictive ability of biomass with lidar-derived variables.
or example, in the case where we included volumetric metrics,
he explained variance improved from 0.68 to 0.79 for multiple
ce for selected models.

linear models. The superior performance of models using regional
biomass allometric equations suggests that reference AGBs using
regional biomass equations are not only more accurate to record the
biomass estimates, and also are more closely related to the lidar-
derived metrics. As a result, one should be cautious when using

national scale allometric equations in regional biomass studies.
Additionally, the lidar metrics selected varied significantly across
the multiple linear models. This was  expected given the large dif-
ference in the reference AGB in large biomass plots. However, in
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ase of a study area with only lower biomass plots, our findings
ay  not necessarily hold true.
In the multiple linear models, height-related metrics explained

ore variation than canopy transmittance and foliage profile
elated metrics. This implies that reference above ground biomass
s primarily related to height and/or DBH directly, and canopy
ransmittance and profile based metrics contain very limited infor-

ation to the biomass estimates.
As suggested by Hudak et al. (2006),  intensity value, particularly

ean intensity values, also prove surprisingly useful in predicting
orest basal area and tree density. This suggests that intensity val-
es could potentially improve the predictive power of regression
odeling of biomass. Further research is needed to determine how

he addition of lidar intensity will improve the regression model-
ng performance in both reference AGB calculated from regional
llometric equations and reference AGB calculated from Jenkins
llometric equations. Similarly, integrating optical and Radar data
nto lidar variable also proved to be useful for biomass prediction
Hyde et al., 2006; Nelson et al., 2007). Thus, assessing influence of
aried allometric equations when high spatial resolution imagery
s integrated is also worth to be studied.

Although non-parametric approaches are increasingly used to
odel forest parameters with airborne discrete return lidar data

e.g., Hudak et al., 2006; Yu et al., 2011), further exploration is
equired for more refined use of non-parametric approaches in
iomass estimates using lidar data.

. Conclusion

In this case study, we tested the sensitivity of lidar metrics to
eference above ground biomass estimates calculated from two  sets
f frequently used allometric equations: the national-scale Jenkins
llometric equations and regional allometric equations from the
IA, in a conifer dominated forest site in the Sierra National Forest,
A. We  evaluated the performance of these two sets of equations
y comparing adjusted R2 and RMSE across a set of eight models.
ur main findings are as follows:

1) Discrete return lidar-derived variables are more sensitive to
reference AGBs calculated from regional allometric equations
with respect to the amount of variation explained, variables
selected and variables of importance played in multiple linear
regression. As a result, care should be taken when substituting
national scale allometric equations in regional biomass scale
studies and vice versa.

2) The mean height of individual trees explained a large propor-
tion of variation in the regression modeling of biomass. This
is consistent with previous studies that individual tree results
have better predictive power for biomass estimation.

3) This analysis further supports the concerns that national scale
allometric equations for regional biomass estimate might favor
species with more published allometric equations.

4) This study illustrates the value of integration of an empiri-
cal relationship between DBH and height into multiple linear
regression modeling for more accurate biomass estimates.

5) The availability of, and uncertainly in, allometric equations
poses a practical limit to the accuracy with which LiDAR can
predict biomass.

The use of airborne lidar system in forest biomass estimation is

idely accepted as the most accurate sensors, but rigorous proce-
ures should be taken in selecting appropriate allometric equations
o produce reliable and consistent reference biomass estimates.
nconsistencies should be expected if this source of variability is
ot controlled.
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