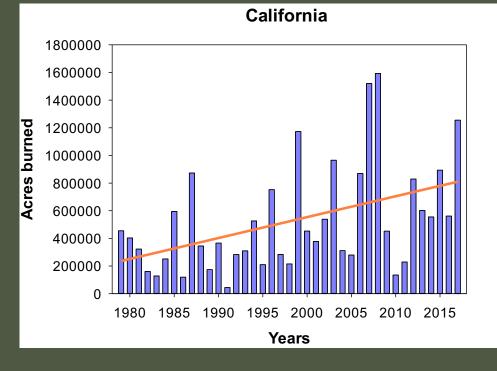


Fuel management in plantations


Eric Knapp

U.S. Forest Service Pacific Southwest Research Station Redding, CA

With co-authors: Jianwei Zhang, Kaelyn Finley, Gregory Hamby, J Morgan Varner, Scott Roberts, Brent Frey

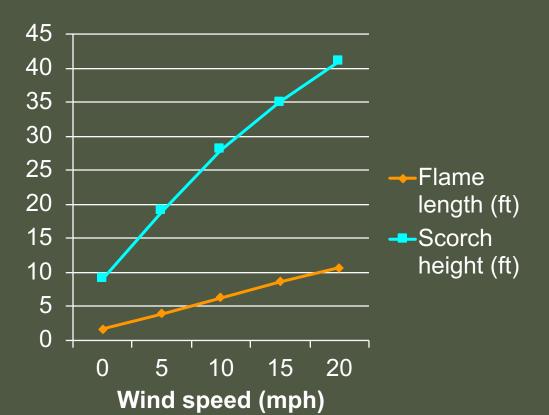

Why manage fuels in plantations?

Trends in fire activity

Planted after 1987 Stanislaus Complex re-burned in 2013 Rim Fire

Structure of plantations can pose some challenges for surviving a wildfire

- Small tree size
- Low height to crown base
- Even age and spacing = vertical and horizontal fuel continuity



Mechanisms of fire-caused tree mortality: crown scorch

Scorch height: >140°F for > 1 minute

Flame length Flame tip ~ 600° F

Fuel model 9 (long needle litter) Late summer fuel moisture 25% slope, Temp. = 90° F

Mechanisms of fire-caused tree mortality: bole charring

Small trees: Thinner bark, lighter fuels at base Large trees: Thick bark, heavier fuels at base

Bole charring and tree mortality in plantations

Fuels raked 1.5 ft from base of randomly selected trees
Prescribed burn

Knapp EE, JM Varner, M Busse, CN Skinner, and CJ Shestak. 2011. Behaviour and effects of prescribed fire in masticated fuelbeds. International J Wildland Fire 20:932-945.

18/65 (28%) raked trees died 23/66 (35%) unraked trees died

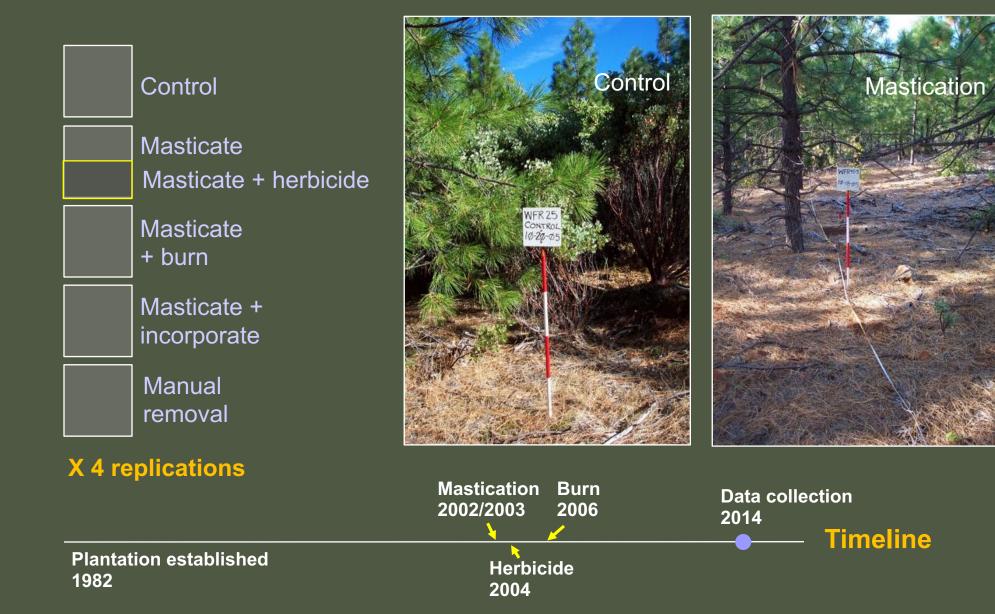
Difference not statistically significant

- Young tree mortality in many cases caused by crown loss
- Crown loss a function of fireline intensity
- Fireline intensity a product of the amount of *fuel consumed*
- Survival: smaller trees require lighter fuels

Starting with light fuels increases the odds

Bald Fire - 2013

Clean site prep vs. planting in slash



Fuel reduction in older plantations

• Trees still small relative to potential fire line intensity

Whitmore fuel reduction study

Whitmore fuel reduction study

Herbicide: hexazinone (spring) glyphosate + imazapyr (early summer)

Burning: Early June

Treatments – 2014

Whitmore results - 2014

Treatment

Variable	Control	Masticate	Masticate/ Burn	Masticate/ Herbicide
Manzanita ground basal area (% of control)	64.3ª	3.3 ^b	0.9 ^{bc}	0.1 ^c
Poison oak ground basal area (% of control)	6.9 ^a	10.0ª	4.2ª	0.3 ^b
Trees per acre	292 ^a	136 ^b	157 ^b	131 ^b
Tree basal area (ft ² ac ⁻¹)	89.7	82.8	89.7	91.0
Canopy base height (ft)	14.1	14.8	15.4	12.8

Tree mortality with prescribed burning – 6%

Gregory W. Hamby, J. Morgan Varner, Eric E. Knapp, Scott D. Roberts, and Brent R. Frey (In preparation)

Whitmore – shrub response

- Seeding species
 - Manzanita seed is stimulated by fire
 - Expectation: large response in burn treatment
 - Many manzanita seedlings likely died due to shading

Tree growth

Whitmore - trees > 6.5" in 2003

Likelihood of surviving a wildfire

* Low ***** Very high

Treatment	2002 (pre- treatment	2004 (post mastication)	2007 (post burning)	Current
Control	*	*	*	*
Mastication	*	**	**	***
Mast/Burn	*	**	****	****
Mast/Herbicide	*	**	**	***

So why isn't more burning done in plantations?

Prescribed burning in plantations on the Shasta-Trinity NF

- "Little Mule" planted 1984
- ponderosa pine, Douglas fir, black oak (natural), sugar pine
- Masticated, then burned, spring 2017
 - Temperature 61 to 73 degrees
 - RH 35 to 56%
 - 1,10 hr fuel moisture 12%,12%

- "Rush" planted 1992
- ponderosa pine, Douglas fir, black oak (natural)
- pruned, then burned, fall 2017
 - Temperature 59 to 67 degrees
 - RH 38 to 48%
 - 1,10 hr fuel moisture 13%, 21%

Prescribed burning in plantations on the Shasta-Trinity NF: early results

Site	Planted	Burned	Trees ac ⁻¹	Basal area (ft² ac ^{.1})	Ave DBH (in)	% mortality
Little Mule	1984	5/18/2017	109	60	9.9	4
Rush	1992	10/30/2017	309	86	6.2	26
Telephone	1995	10/23/2018	239	85	7.5	10
McCloud261	1989	10/30/2017	159	65	7.6	4

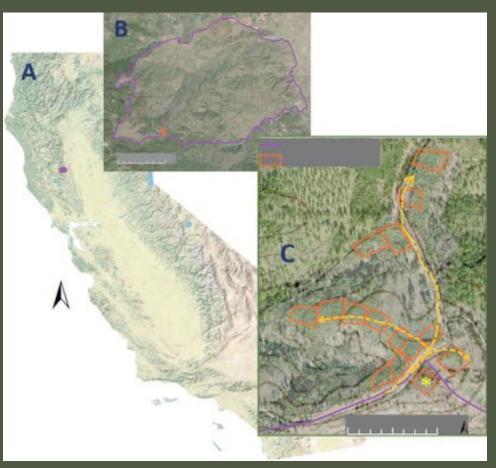
Ignition techniques for minimizing scorch

Strip head firing

Tree-centered spot firing

- Fewer strips
- More time between strips
- Tree centered spot firing or flanking firing
- Burning when air temperature is cool and/or with a breeze

Flanking firing



2017

Prescribed burning in plantations: surface fuel reduction

Effect of backburns on plantation survival

- 2012 Mill Fire (Mendocino NF)
 July 7-18
- Plantations with density and vegetation control treatments
- Control, ½ shrubs removed, all shrubs removed
- Tree densities: 890, 680, 437, 223 trees/ ac

Zhang J, Finley KA, Knapp EE. Resilience of a ponderosa pine plantation to a backfiring operation during a mid-summer wildfire. Int. J. Wildland Fire. In Press

Backburn and tree survival

Pre-fire – heavy shrub cover

Post-fire: No shrub removal

100% shrub removal

Mill fire backburn – outcome in plantations

- Fire killed 24% of trees, 14% of basal area
- No effect of plantation tree density or shrub control treatment on survival
- No effect of fire on subsequent tree growth
- Why?
 - Backburn done at night
 - Day conditions: 100° F, relative humidity: 11%
 - Night conditions: 61° F, relative humidity: 60%

2018 – Mendocino Complex Fire

Burned in 2012

Re-burned in 2018

Did not burn in 2012

Burned in 2018

Mill and Mendocino Complex study conclusions

- Shrubs can be a heat sink under some conditions
- Burning in young stands is possible under a broader range of conditions including burning at night in mid summer
- Fire can help reduce shrub competition
- Subsequent wildfire demonstrates the vital role of light surface fuels to plantation survival

Other concluding thoughts

- Minimizing fuels at all phases of plantation development is key
 - Site preparation prior to planting
 - Pre-commercial thinning or pruning pile burn instead of lop and scatter
- Managing understory shrubs
 - Mastication, burning, herbicides, shading, can all provide long duration control
 - Different strategies for seeding species vs. re-sprouters
- Prescribed burning provides the greatest resilience to wildfire
 - Reduces litter and down woody fuels
 - Scorch can be controlled by how fire is applied and under what conditions
 - Can be done without sacrificing tree growth

