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After 2050: The coldest year in the future
IS always hotter than the hottest year in history!
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Western US Forest Wildfires and Spring—-Summer Temperature
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Strong Jet Stream

- jet stream confined to higher latitudes
- zonal flow (W-E) dominates

- weather systems track ﬁ > ,;;:.7 A& . PI’eCIpItatIOH |S
quickly at surface & TR 2 .

i becoming
more variable...

as the pole warms
faster than the
eguator, the jet
stream slows and
weather patters
become more
persistent



1000 hour fuel moisture (percent)
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California’s shifting fire season: area burned
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Annualized, Cumulate over

allocated simulations time, scenario(s)
multiple realizations per to obtain mean,
scenario, year compound distribution

30-yr mean area burned: 2070-2099 CanESM2 85 bau
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i, Westerling (In Review)

. _ Wildfire simulations for the Fourth

| California Climate Assessment:
projecting changes in extreme wildfire
8 | . | | | events with a warming climate.
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"30%" Treatment by "100%" Treatment by
Administrative Unit Conservation

Objective

Provided by JoAnn Fites-Kaufman & April Brough USDA Forest Service, Region 5



0% Treated 549% Treated 90% Treated

2035-2064

2070-2099

Average annual area burned composites for RCP 4.5: 0% (left), 54% (mid), and
90% (right) of altered forest fuels treated to restore pre/fire suppression fuel
densities for mid/century (top) and end of century (bottom)
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Hurteau, Liang, Westerling, Wiedinmyer “Vegetation-fire feedback reduces projected area burned under climate change”
Scientific Reports 2019

Effects of dynamic vegetation on area burned and total C
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Liang, Hurteau, Westerling, 2018 Frontiers in Ecology and the Environment 16(4): 207-212.



midcentury burned area, untreated GFDL A2 Liang et al, 2017
(ratio of 2035-64 burned area to 1961-90 burned area)
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Forest Management for
Spotted Owl Habitat

Jones Keyser Westerling Baldwin Gutiérrez Sawyer Keane Clare Peery 2019
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San Francisco Bay Area RCP 8.5 2070 to 2099
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Vulnerability Assessment &
Adaptation Planning Support

for San Mateo County 5
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GENCE

Free and open access to the next generation of wildfire

risk models for grid resiliency
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Collaborating across four workgroups

PRINCIPAL INVESTIGATOR (PI)

Spatial [nformatics Group & PROJECT MANAGER (PM)
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FIRE SCENARIO
EXTREME WEATHER BEHAVIOR FORECAST TOOLS ANALYSES
Janice Coen Scott Stephens Chris Lautenberger LeRoy Westerling
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Extreme Weather and Northern

California

Weather Stations

 Analytical approach for optimizing the placement of Nevada
weather stations

 Pilot Testing of Upper Air Profiler for situational awareness
 Algorithm to identify regional archetypal weather conditions
associated with rapid fire growth.
« Based on analysis of historic fire-weather data

« 8 weather regions

» Regional analysis is refined by hyper-local coupled
airflow - fire modeling.

* Finding - days with the most fire growth are associated
with two or three extreme weather types.




Fire Behavior

« Predicting heat release rates across the range of fuel
structures and environmental conditions found in
wildland areas

* New fuel measurement and mapping system

« Map current and projected future fuel conditions in
areas of elevated tree mortality

« Develop fire model that includes large fuels (> 3 inches
diameter), solid phase combustion, and buoyancy

GENCE




Theme: O Light @ Dark Fire Weather Risk Forecast
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* Open access and intuitive web-based
fire forecast platform

* Fire Weather Forecast
* Active Fire Forecast
RISk Forecast

 Beta version -
https://pyregence.org/forecast



https://pyregence.org/forecast

5th Assessment - Long-term Wildfire Projectic %&f
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PM2.5 and land cover
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Fig.4 PM2.5 emissions in forest, shrub, and grass land in California (1984-2016) (Gg)



PM, - of the largest 15 wildfires contributed 22% percent
of total emissions
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Fig.3 PM, s range for each fire (Gg) (left); Map of PM,
emissions of the largest 10 fires during 1984-2018 (right)



Since the 21st century, there has been an increasing in PM, ¢
emissions, an earlier and longer wildfire emission season
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Fig.4 PM, s annual (left) and monthly (right) trends aggregated over
the state of California, monthly data also aggregated for historical
1984-2016(Gg)



Methods - fire severity prediction

Fire start month

(1) Spatial and temporal
domain of analysis

e 1/24 latitude/longitude grid

e 1984-2017

e California statewide, 3 sub
regions (Sierra Nevada,
Northern Coastal California,
Southern Coastal California)

35
Fig.1. Wildfire perimeters and fire

start month in California during
1984-2017.Data source: MTBS



(3) Modeling framework

« Variable
Importance

* Total
area
burned

* Fraction
of area
burned
in 3
severity
classes
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(3) severity fraction—result from GAM model
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Fig.3. Predicted severity fractions versus observed
severity fraction distribution and observed mean fraction
for each group (line) in California

"avgTJJA","avgTMA
M”,”Sum”, “CpreC”

R-sq.(adj) = 0.476

“firemonthVPD”,’fores

t" "elevation”
R-sqg.(adj) = 0.234

[ 1]

“forest”, “cprec’,
“‘avgTJJA’
R-sqg.(adj) = 0.371



(1) 30 meter resolution
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PM2.5 emissions from each wildfire (right)



5th California State Climate Assessment for Wildfire

Butte Fire example: High severity pixel probabilities

Modeled Probability vs Observed:
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Modeled Pixel Probability % in High Burn Severity
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