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Abstract. Shifting disturbance regimes can have cascading effects on many ecosystems processes.
This is particularly true when the scale of the disturbance no longer matches the regeneration strategy
of the dominant vegetation. In the yellow pine and mixed conifer forests of California, over a century
of fire exclusion and the warming climate are increasing the incidence and extent of stand-replacing
wildfire; such changes in severity patterns are altering regeneration dynamics by dramatically increas-
ing the distance from live tree seed sources. This has raised concerns about limitations to natural refor-
estation and the potential for conversion to non-forested vegetation types, which in turn has
implications for shifts in many ecological processes and ecosystem services. We used a California
region-wide data set with 1,848 plots across 24 wildfires in yellow pine and mixed conifer forests to
build a spatially explicit habitat suitability model for forecasting postfire forest regeneration. To model
the effect of seed availability, the critical initial biological filter for regeneration, we used a novel
approach to predicting spatial patterns of seed availability by estimating annual seed production from
existing basal area and burn severity maps. The probability of observing any conifer seedling in a 60-
m2 area (the field plot scale) was highly dependent on 30-yr average annual precipitation, burn sever-
ity, and seed availability. We then used this model to predict regeneration probabilities across the entire
extent of a “new” fire (the 2014 King Fire), which highlights the spatial variability inherent in postfire
regeneration patterns. Such forecasts of postfire regeneration patterns are of importance to land man-
agers and conservationists interested in maintaining forest cover on the landscape. Our tool can also
help anticipate shifts in ecosystem properties, supporting researchers interested in investigating ques-
tions surrounding alternative stable states, and the interaction of altered disturbance regimes and the
changing climate.
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INTRODUCTION

The spatial pattern of an ecological disturbance can have
significant consequences for many ecological processes and
ecosystem services, including vegetation regeneration, hydrol-
ogy, carbon storage, nutrient cycling, wildlife habitat, and sus-
ceptibility to future disturbance (Turner 1989). In forested
ecosystems that are shaped by wildfire, the spatial pattern of
fire severity, or the amount of tree mortality in a given area,
can shape postfire vegetation regeneration patterns. In turn,
these patterns shape longer-term demographic processes and
community trajectories (Turner et al. 1997). Spatial patterns
of severity are particularly important in forests where the foun-
dation species lack serotiny, long-lived soil seed banks, or
sprouting ability, because regeneration patterns will be depen-
dent on the spatial configuration of live, remnant individuals
to provide a seed source (Haire and McGarigal 2010, Crotteau
et al. 2013, Dodson and Root 2013, Chambers et al. 2016,
Donato et al. 2016, Harvey et al. 2016, Welch et al. 2016).

Understanding the relationship between the spatial pat-
terns of fire severity and postfire regeneration processes
across the landscape is critical in the face of changing fire
regimes. Shifts in the spatial patterns of severity could have
significant effects on postfire forest regeneration if the scale
and severity of the disturbance no longer match the regener-
ation traits of the dominant species (Collins et al. 2017, Ste-
vens et al. 2017). A prominent example of this potential
disconnect is in many of the semiarid conifer forests of the
western United States, where the historical fire regime cre-
ated a heterogeneous landscape that was characterized by
frequent, low-to-moderate severity fires with smaller patches
of high severity where all or nearly all trees are killed (Par-
sons and DeBenedetti 1979, Stephens and Collins 2004, Col-
lins et al. 2009, Collins and Stephens 2010, Perry et al.
2011). This heterogeneity provided a diversity of habitats
across space and also likely enabled the persistence of the
foundation conifer species through time by generally limit-
ing the distance between live tree seed sources after distur-
bance. Over the last century, fire exclusion in western
semiarid conifer forests and high-grade logging of large trees
in many areas have led to increases in fuels, forest density,
and the component of fire-intolerant species (Stephens and
Ruth 2005, Sugihara et al. 2006, Safford and Stevens 2017).
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As a result, modern fires tend to burn through a more
homogeneous forest with a more continuous fuel bed than
they did prior to Euro-American settlement (Collins et al.
2011). In concert with the warming climate, these conditions
have led to more severe fires with increased high-severity
patch sizes in some forested areas (Westerling et al. 2006,
Miller and Safford 2012, Miller et al. 2012); today, high-
severity patches of thousands of hectares are not uncom-
mon. By increasing the distance to live trees, the increase in
high-severity patch size may result in limited reforestation
and potential shifts to non-forested vegetation types, which
can be maintained by positive feedbacks with recurrent fire
(Coppoletta et al. 2016, Tepley et al. 2017). A better under-
standing of the relationship between severity patterns and
regeneration processes in these ecosystems can help antici-
pate potential shifts in vegetation type and structure, and
how such shifts may affect ecological processes and ecosys-
tem services (Turner et al. 2013).
In addition to seed source proximity, postfire conifer

establishment is also modified by other biotic and abiotic
drivers that vary spatially across the landscape. Other biotic
drivers of conifer tree regeneration patterns include compe-
tition (Dodson and Root 2013), facilitation (Keyes et al.
2009), herbivory (Vander Wall 2008), and local stand struc-
ture and species traits (Dobrowski et al. 2015). Broader
scale abiotic drivers include topography and climate, where
climate parameters for the regeneration niche are distinct
from those occupied by mature trees (Dobrowski et al.
2015); fine-scale variations in abiotic conditions, including
microclimates, are also critical for conifer establishment
(Gray et al. 2005, Puhlick et al. 2012, Dobrowski et al.
2015). Understanding the relative importance of remnant
seed tree spatial patterns to these other drivers can bolster
our understanding of community assembly after landscape-
scale disturbance. Moreover, it can improve spatially explicit
predictions of postfire conifer regeneration that can be used
to support land management and conservation planning.
To better understand the relationship between spatial pat-

terns of burn severity and regeneration processes in non-sero-
tinous conifer forests, we used data from 1,848 plots in 24
wildfires that burned in mixed conifer and yellow pine forests
throughout California to build a habitat suitability model for
postfire conifer regeneration. Recent work using data from
14 of these fires identified proximity to seed source as a pri-
mary driver (Welch et al. 2016); here, we build on that work
by more closely examining the importance of spatial patterns
relative to other drivers of postfire conifer regeneration, with
the goal of scaling these findings from the plot scale to the
landscape scale so that they can be used to forecast regenera-
tion patterns on new fire events. This approach produces pre-
diction maps that can be generated immediately postfire to
help land managers with postfire management decision mak-
ing. Depending on management goals, these maps could sup-
port decisions on where to plant trees if rapid reforestation is
desired, especially where resources are limited. More broadly,
these maps can also inform questions about ecological
change after disturbance under altered fire regimes.
Our ability to effectively scale these plot data to an entire

fire event or across a landscape is necessarily limited to the
data that are available at those scales. Data on broad-scale
abiotic drivers, such as topography and climate, are widely

available; however, data on fine-scale biotic drivers, such as
competing vegetation, herbivory, microclimates, and dis-
tance to individual seed trees, are generally not. Several
authors have used Euclidean distance to the nearest “lesser
burned” edge as a proxy for field-measured distance to indi-
vidual seed sources in high-severity areas (where lesser
burned edge refers to areas of lower burn severity where at
least some seed trees survived) (Bonnet et al. 2005, Cham-
bers et al. 2016, Harvey et al. 2016). This seed availability
proxy (SAP) has helped to explain regeneration patterns
where field data on distance to seed tree are lacking; how-
ever, this approach does not fully incorporate the impor-
tance of high-severity patch size and configuration. It is
possible to have two sampling locations with equal Eucli-
dean distance to lesser burned edge, but that are situated in
otherwise very different patch sizes and shapes, which may
in turn influence the total seed availability at each plot.
Our goal was to improve on this SAP using techniques to

better model seed availability by incorporating neighbor-
hood effects. Using maps of estimated basal from the Land-
scape Ecology, Modeling, Mapping and Analysis
(LEMMA) Lab, a collaborative research group at the US
Forest Service (USFS) Pacific Northwest Research Station
and Oregon State University (Ohlmann and Gregory 2002),
we created maps of estimated postfire annual seed produc-
tion and then smoothed these surfaces to simulate a neigh-
borhood effect. We created a suite of these SAPs with a
range of neighborhood smoothing distances, from 50 to
500 m in 50 m increments, to better understand the best
neighborhood size for predicting the probability of conifer
regeneration.
We then combined the SAP approach with climatic, topo-

graphic, and burn severity data to examine the relative
importance of the spatial patterns of seed availability to
these other drivers and to also predict the spatial pattern of
postfire conifer regeneration after future fires. Specifically,
we asked (1) What environmental variables are most impor-
tant for forecasting postfire conifer regeneration? (2) How
can we best scale plot-level relationships to the scale of the
landscape with seed availability proxies? (3) How do forecast
models with seed availability proxies compare with field-
based models that include variables for competition and
individual seed sources?

METHODS

Study sites

We used a region-wide monitoring data set collected by
the USFS Region 5 Ecology Program and partners at the
University of California-Davis (Welch et al. 2016) and
Humboldt State University (DeSiervo et al. 2015). A total
of 1,848 plots were installed in 24 wildfires throughout Cali-
fornia (Fig. 1) that burned between 1999 and 2013. Plots
were measured between 1 and 12 yr postfire, with most mea-
sured 5 yr after fire (Table 1). Plots were installed between
1,000 m and 2,500 m in elevation, across a range of forest
types that were conifer-dominated prefire, with an emphasis
on forest types that included a substantial component of the
following species’ of interest: ponderosa pine (Pinus pon-
derosa Lawson & C. Lawson), sugar pine (Pinus lambertiana
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Douglas), Jeffrey pine (Pinus jeffreyi Grev. & Balf.), white
fir (Abies concolor (Gordon & Glend.) Hildebr.), incense-
cedar (Calocedrus decurrens (Torr.) Florin), and Pacific
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. men-
ziesii). Less than 10% of plots were located in areas with
notable components of red fir (Abies magnifica A. Murray
bis), lodgepole pine (Pinus contorta Louden ssp. murrayana
(Grev. & Balf.) Critchf.), western white pine (Pinus monti-
cola Douglas), or knobcone pine (Pinus attenuata Lemm.).
The forests we studied fall primarily into the general “yellow
pine-mixed conifer” category described by Safford and Ste-
vens (2017). For each fire, plots were located at the vertices
of a 200-m grid overlaid across the fire severity map in Arc-
Map 10.4 (ESRI, Redlands, California, USA). Continuous
burn severity imagery was obtained from USFS Region 5
(data available online).7 Burn severity maps were generated
from 30 m pixel Landsat imagery, using the Relativized dif-
ferenced Normalized Burn Ratio (RdNBR; Miller and
Thode 2007). RdNBR is derived by calculating the Normal-
ized Burn Ratio (NBR) that is sensitive to chlorophyll and
moisture (using the near- and mid-infrared, Landsat bands
4 and 7) for both pre- and postfire imagery, which are then
differenced (dNBR) and relativized (RdNBR) to account
for variation in prefire cover. Of the 1,848 plots, 40% were
located in high-severity areas with >90% overstory mortality,
29% were located in moderate-severity areas that range from
25 to 90% mortality, 20% were located in low severity areas
with <25% mortality, and the remaining 10% of plots in
unburned areas. One exception to this design was the 2013
Rim Fire, where the same field data collection protocol was
used, but the methods for randomizing the plot locations
differed. There plots were co-located with a wildlife study

and study on mulch effects on vegetation (Shive et al. 2017);
only unmulched control plots were included in this analysis.
For all fires, areas with intensive postfire management, such
as salvage logging and planting, were excluded from analy-
sis. We did not attempt to control for prefire treatments.

Field data collection

Regeneration data were recorded in 60-m2 plots. Regener-
ation of conifer seedlings <1.37 m tall was tallied by species
and age; age was determined by counting bud scars (i.e.,
branch whorls). Our own field assays and other published
work suggest that seedlings <7 yr old can be relatively accu-
rately aged using bud scars (~65–80% absolute accuracy
with mean errors generally <0.25 yr over the range 0–7 yr
(Daly and Shankman 1985, Millar et al. 2004, Urza and
Sibold 2013; H. D. Safford, unpublished data). Crews made
ocular estimates of cover by life-form (tree, shrub, forb, and
graminoid) and ground cover (litter, rock, wood, and bare
soil). Live overstory tree basal area was collected by species
using variable radius plots, using basal area gauges with
basal area factors that ranged from 5 to 40, depending on
site characteristics (Avery and Burkhard 2015). Finally, dis-
tance to potential seed source was recorded for all focal con-
ifer species that were visible from the plot using a laser
range finder. Potential seed sources were live trees that were
bearing cones or had borne cones in the previous year.

Remote sensing products

We used digital elevation models (DEMs) with a 10-m res-
olution acquired from the USGS (U.S. Geological Survey
2014) and generated slope and aspect from the DEM using
ESRI ArcMap 10.4. We downloaded 270-m resolution raster
data sets of 30-yr climate averages (1981–2010) for climatic
water deficit (CWD; mm), annual precipitation (PPT; mm),
actual evapotranspiration (AET; mm), 1 April snow water
equivalent (Snowpack; mm), and minimum temperature
(TMIN; °C) from the California Climate Commons (data
available online).8 These climate averages were modeled using
the basin characterization model (Flint et al. 2013). We
extracted all of these data to each sampling plot (Table 2).
For burn severity, we assigned the raw RdNBR values for

both the Initial Assessments (IAs), which were created
immediately postfire, and the Extended Assessments (EAs),
which were created approximately one year postfire, to each
regeneration plot. Because IAs were not available for four
wildfires (Freds, Pendola, Power, Spanish), we created a
model to predict IA values from EAs, using the remaining
18 fires in a simple linear regression model that included
both EA and its squared term to estimate a nonlinear rela-
tionship (adjusted r2 = 0.728). To compare the relative per-
formance of the EA and IA values, we used the Akaike
information criterion (AIC). AIC is the log-likelihood of the
model (a measure of overall model fit) adjusted for the num-
ber of parameters in the model. The IA performed much
better than the EA when tested against regeneration proba-
bility independently (AIC: 1,926.68 and 1,973.27, respec-
tively) and so was used in all models.

FIG. 1. Locations of all fires where plots were measured across
the state of California. Forest types were derived from California
Wildlife Habitat Relationship (WHR) Types, acquired from the
USFS Pacific Southwest Region Geospatial Data website (https://
www.fs.usda.gov/main/r5/landmanagement/gis). Fire perimeters were
buffered by 2 km to increase visibility in the figure.

7 http://www.fs.usda.gov/main/r5/landmanagement/gis 8 http://climate.calcommons.org/
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We obtained maps of estimated basal area by species from
gradient nearest neighbor structure (species-size) maps pro-
duced by the Landscape Ecology, Modeling, Mapping and
Analysis (LEMMA) Lab, a collaborative research group at
the USFS Pacific Northwest Research Station and Oregon

State University (Ohlmann and Gregory 2002). These maps
estimate basal area by species at the 30-m pixel scale that are
based on nearest-neighbor relationships between remotely
sensed Landsat data and USFS Forest Inventory and Analy-
sis (FIA) plots. Kappa coefficients, which measure intra-
group agreement for categorical calculations, for our species
of interest were as follows: Douglas-fir (0.5644), incense-
cedar (0.5093), Jeffrey pine (0.4362), ponderosa pine
(0.5018), sugar pine (0.4176), white fir (0.5465; Ohmann
et al. 2014). Because the LEMMA product was generated in
2012 (Ohmann et al. 2014), it reflected postfire forest struc-
ture on all fires except for the Rim Fire; we reduced the
basal area estimates in the Rim Fire using burn severity
maps. This involved classifying the burn severity maps into
seven classes of percentage of basal area mortality (0%, 1–
10%, 10–25%, 25–50%, 50–75%, 75–90%, 90–100%) as mod-
eled by Miller et al. (2009), and multiplying the LEMMA
basal area estimate by the midpoint for each class. For the
highest severity class (90–100% basal area mortality), we
used 100% rather than the midpoint (95%) because it was
more representative of that class in the Rim Fire (data from
the Rim Fire documented 99.5% basal area loss in the high-
est severity category; K. Shive, unpublished data). In addi-
tion, other work in the Rim Fire showed that basal area loss
in the highest severity class was >95% for most plots (Lyder-
sen et al. 2016).

Creating seed availability proxies (SAPs)

Euclidean distance.—We measured the shortest distance
from each sampling point to the nearest, lesser burned edge
(pixels categorized as unburned, low or moderate severity in

TABLE 1. List of wildfires used in analysis.

Fire name Fire year Time postfire measured (yr) National forest Size (ha) No. plots

American River Complex 2008 5 Tahoe 8,480 78
Antelope 2007 5 Plumas 9,351 91
Bar 2006 5 Shasta-Trinity, Klamath 40,858 84
Bassets 2006 5 Tahoe 939 79
BTU Lightning 2008 5 Plumas 21,340 95
Butler 2 2007 5 San Bernardino 5,980 56
Chinaback Complex 2007 5 Klamath 1,280 72
Cub Complex 2008 5 Lassen 8,406 118
Deep 2004 5 Sequoia 1,364 23
Elk Complex 2007 5 Klamath 5,747 49
Freds 2004 5,7,8 Eldorado 3,298 44,6,6
Harding 2005 5 Tahoe 954 73
Moonlight 2007 5 Plumas 26,595 118
Pendola 1999 11,12 Tahoe 4,752 33,47
Power 2004 5 Eldorado 6,987 106
Ralston 2006 5 Eldorado, Tahoe 3,227 74
Rich 2008 3,4 Plumas 2,703 74,37
Rim 2013 1,2 Stanislaus 104,131 53,41
Rush 2006 5 Klamath 2,021 55
Showers 2002 7 Lake Tahoe Basin Management Unit 129 10
Sims 2004 6,9 Shasta-Trinity, Six Rivers 1,541 68,10
Slide 2007 5 San Bernardino 5,208 52
Spanish 2003 7 Mendocino 2,584 158
Straylor 2004 5 Lassen 1,413 40

Note: For fires measured over multiple years, plot counts per year are listed in the same sequence as the number of years postfire measured.

TABLE 2. Candidate variables for the forecast model and
field-derived variables used in the full model.

Variable Units

Climatic
Actual evapotranspiration mm
Annual precipitation mm
Climatic water deficit mm
Minimum temperature °C
Snow water equivalent, 1 April mm

Topographic
Elevation m
Aspect degrees
Slope %

Seed availability proxies (SAPs)
Kernel surface of seed availability at 10
bandwidths (50–500 m)

Euclidean distance to unburned, low, or moderate
severity edge

Burn severity
Initial assessment (RdNBR)

Field-derived
Shrub cover %
Litter cover %
Live tree basal area m2/ha
Distance to live tree seed source m

Note: RdNBR, Relativized differenced Normalized Burn Ratio.
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the classified burn severity map). For plots located in non-
high-severity pixels, distance was set to zero. We used the
Near tool in ArcMap 10.4 to measure distances.

LEMMA based.—To estimate relative seed production
across the landscape, we calculated annual seed production
from basal area as modeled by LEMMA (Ohmann et al.
2014). We calculated species-specific annual seed production
for each 30-m pixel (number of seeds per 900 m2) using estab-
lished equations based on seed mass by species and basal area
(Greene and Johnson 1994). These equations reflect estab-
lished relationships that generally describe increases in the
number of seeds produced with increasing tree crown size
within a given species, but overall lower numbers of seeds
produced for heavier seeded species relative to lighter seeded
species (Venable 1992). To calculate seed production, we con-
verted basal area to leaf mass (Greene and Johnson 1994: Eq.
2) and then estimated seed production based on leaf mass
and individual seed mass (Greene and Johnson 1994: Eq. 5).
We calculated seed mass by species from the average number
of seeds per pound (Franklin and Schopmeyer 1974, Krug-
man and Jenkinson 1974, Owston and Stein 1974, Stein 1974,
USDA Forest Service 1990). The equations provided in
Greene and Johnson (1994) were intended for use with basal
area of individual trees, but because we lack detailed stand
structure data, we used total basal area by species for each
pixel as an estimate of the relative magnitude of seed produc-
tion across the landscape. We then summed the number of
seeds produced by each of the focal species for each pixel.
We converted each burn severity pixel to a 30-m point grid

across each fire perimeter with a 500 m buffer. Total esti-
mated annual seed production was assigned to each point,
which was used to create smoothed surfaces of seed avail-
ability using Gaussian density kernels centered at each
point. Seed dispersal curves are generally modeled with fat-
tailed exponential or lognormal curves (Clark et al. 1999,
Greene and Johnson 2000), but these were not available for
landscape-level modeling in ArcMap 10.4. We created these
smoothed surfaces using a range of bandwidths (or radii)
from 50 m to 500 m at 50-m intervals (Fig. 2c–e). Since all
of the bandwidths are greater than the distance between
points, this creates a contiguous surface of overlapping ker-
nels with variable density values, in this case seed production
(Fig. 2e). The Kernel Interpolation Tool with Barriers in
ArcMap 10.4 was used to develop the smooth surfaces.

Statistical models

We used generalized additive models (GAMs; Hastie
et al. 2001) to build binomial models for predicting the
probability of conifer regeneration, lumping our six species
of interest (Douglas-fir, incense-cedar, Jeffrey pine, pon-
derosa pine, sugar pine, white fir) into a single presence/
absence variable. Because we were building these models to
forecast regeneration across an entire fire, including on
future wildfires, we examined only variables that could be
predicted after a fire and therefore available for use in a fore-
casting framework; hereafter, we refer to these models as
“forecast”models. We examined a suite of potential climatic,
topographic, burn severity, and SAP variables (Table 2) to
build a forecast model that predicts the probability of

observing at least one regenerating conifer in a 60-m2 area,
which is the area of field plots used to build the model. We
also included time since fire as the number of years after the
fire that the measurements were taken.
To find the best forecast models, we compared candidate

models including burn severity (IA) and all climatic and topo-
graphic variables other than a SAP term, and dropped non-
significant terms one at a time; however, since several of the
climate variables were correlated, we also checked for changes
in AIC with and without these terms. Further model exami-
nations included visual inspections of partial residual plots as
well as P values for relevant variables. The partial residual
plots show the magnitude of change in the odds of regenera-
tion, relative to the odds at the variable’s mean, which is set
to 1. The partial residuals plot for each variable represents
the expected change in the odds of the response while control-
ling for all other variables in the model. We also included the
individual fire as a random effect to account for differences
between fires that we were unable to measure in the field.
Once we determined the best predictor variables other than a
SAP term, we then used them in a base model and compared
models with SAPs at different scales (50–500 m) to determine
the most important neighborhood of seed availability for pre-
dicting regeneration with AIC. All analyses were performed
using the mgcv package in R (Wood 2006).
To better understand how well the kernel-based SAPs

helped predict regeneration relative to other methods, we
then compared the best forecast model with models where we
substituted the kernel-based SAP with (1) no SAP, (2) the
Euclidean distance to nearest, lesser burned edge SAP, and
(3) field-derived distance to seed tree. This comparison held
the rest of the model constant, enabling the evaluation of the
SAP itself. Next, we also wanted to better understand how
much information is lost when using the limited number of
variables available for prediction (Table 2) at the landscape
scale after a new wildfire. In the forecasting framework, spa-
tially and temporally variable responses such as regenerating
shrub cover cannot be readily predicted across the landscape,
yet we know these are important drivers of postfire conifer
regeneration (Collins and Roller 2013, Welch et al. 2016). To
evaluate how our forecast model performed in comparison
with models with these important, local-scale drivers, we
compared our forecast model to a “full” model with field-
derived variables that were determined to be significant on a
subset of our fires by Welch et al. (2016); specifically, this
included variables that represented competition (shrub
cover), microsites (litter cover), and seed sources (distance to
individual live trees). We compared these models with AIC
values as well as visual assessments of the model fitted values
relative to actual observations (Fig. 4).

Model validation and predictive map

To account for variability between fires, and to mimic fore-
casting a future fire based on past fires, we used the leave-
one-out method of model cross-validation, leaving each fire
out of the model and predicting it with a model from the
remaining 23 fires (Hastie et al. 2001). Using the predictions
from the cross-validation procedure, we created a reliability
diagram by binning these predictions into the following
seedling presence probability classes: 0–0.2, 0.2–0.4, 0.4–0.6,
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0.6–0.8, and 0.8–1.0. Within each category, we calculated the
frequency of observed positive cases (conifers present) in the
total number of observations in that category for each fire,
excluding instances where the number of observations for an
individual fire within a class was <5. We then created box-
plots with the probability classes on the x-axis and observed
frequency of positive cases per fire per class on the y-axis, as
a means to show the expected variability in prediction values.
To create an example of a regeneration probability predic-

tive map, we converted the burn severity raster to a point
grid on a “new” fire (the 2014 King Fire) and created the rel-
evant SAP using the 2012 LEMMA basal area estimates,

adjusted by the basal area mortality classes from RdNBR
(described above for the Rim Fire). We then overlaid all rele-
vant climatic and topographic variables and assigned values
to each point in the point grid. Using the forecast model
with all fires included, we then predicted the probability of
conifer regeneration in a 60-m2 area for each point in the
grid. To show the inherent variability in the model, we
binned the point predictions into the same classes used for
the reliability diagram and converted them to a raster, which
was color-coded to match boxplots from the reliability dia-
gram. We also included boxplots and a summary table of
the observed conifer seedling density data for each class.

FIG. 2. Work flow for creating kernel surface as a proxy of relative seed availability. This involved confirming that (a) the LEMMA basal
area estimates generally matched (b) the burn severity imagery to ensure the LEMMA reflected postfire patterns. Basal area was converted to
(c) annual seed production and smoothed using a kernel surface; surfaces generated from a (d) 50-m and (e) 250-m bandwidth are shown here.
The black dots represent field sampling plots.
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RESULTS

The best model for forecasting the odds of conifer regen-
eration included annual precipitation, climatic water deficit,
actual evapotranspiration, snowpack, aspect, slope, number
of years postfire, burn severity, and the kernel-based SAP
with a 150-m neighborhood. Annual precipitation and con-
tinuous burn severity (IA) had the largest effect on the odds
of regeneration, demonstrated by their percentage of total
chi square values (22.0% and 21.8%, respectively) (Fig. 3).
The odds of regeneration in a 60-m2 area were roughly seven
times greater at precipitation levels greater than 2,000 mm
than at locations with average precipitation (~1,200 mm).
Burn severity (IA) had strong negative effects on regenera-
tion at RdNBR values above about 700, which corresponds
to high severity. At sites that experienced very high burn
severity (RdNBR >1000), the odds of regeneration were

~60% less than sites with moderate-to-low burn severity
(<500). Increasing estimated annual seed input generated
from the 150 m neighborhood kernel surface strongly
increased the odds of regeneration, but the percentage of
total chi square was low (6.5%). However, this variable was
moderately correlated (Pearson’s: �0.48) with burn severity,
which can affect chi square and P value estimates. An
exploratory model without the correlated burn severity (IA)
variable increased the kernel-based SAP percentage of chi
square to 39%, and a model without the kernel-based SAP
increased the burn severity (IA) percentage of chi square to
35%; the overall shape of the responses did not change when
these variables were included alone. In both cases, they were
at least 10% higher in terms of percentage of chi square than
any other variable in the model, including annual precipita-
tion, suggesting that these two variables together are the
most important drivers of regeneration. Aspect explained

FIG. 3. Partial residual plots for model predicting seedling presence/absence of any of the six conifer species of interest. Residual plots
show how each variable (x-axis) influences the probability of conifer regeneration in a 60-m2 area (y-axis, log scale), given that all other vari-
ables are in the model. The response at the variable’s mean is set to one on the y-axis; deviations from one are the magnitude of change in
the log odds of observing regeneration. P values and the percentage of chi square attributed to each of these predictors are in the upper left
corner. SAP, seed-availability proxy.
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14% of the variation, where north- and east-facing aspects
had a positive effect on the odds of regeneration. The esti-
mated odds of regeneration declined through time, with the
highest probabilities predicted for fires measured in the first
few years postfire. The remaining explanatory variables
included in the model improved model fit as assessed by
AIC and the reliability diagrams, but had percentage of chi
square values <5%. Increasing slope, AET, CWD, and snow-
pack values all had a generally weak, negative effect on the
odds of regeneration (Fig. 3). All climate variables were
moderately correlated (with Pearson’s coefficients ranging
from 0.49 to 0.66), so we also examined models with all
other variables and individual climate variables one at a
time, since the inclusion of correlated variables can affect
the estimation of chi square and P values. In the absence of
the other correlated variables, none of the variables differed
dramatically from the model with all climate variables in
terms of model estimates or the partial residuals shown in
Fig. 3. Minimum temperature and elevation were not signif-
icant, and models with and without either variable did not
differ in terms of AIC and so both were eliminated from the
final model. All reports of variable relationships with esti-
mated odds of regeneration are made with all other variables
in the model.
The forecast model with Euclidean distance (P = 0.037;

AIC = 2,046.01) was only slightly better than a model with
no SAP term (AIC = 2,049.62). The best neighborhood size
for the kernel-based SAP was 150 m (P < 0.001; AIC =
2,024.85). However, SAP neighborhoods of 200 m and
250 m all had dAIC < 2, suggesting no real difference
between these neighborhood sizes. Not surprisingly, field-
measured locations of nearest potential seed tree performed
the best (P < 0.001; AIC = 1,983.51). The full model that
included field-derived data on shrub cover (P < 0.001), litter
cover (P = 0.017), live tree basal area (P = 0.110), and dis-
tance to individual seed tree (P < 0.001) performed substan-
tially better (AIC = 1,956.80) than any forecast model.
Differences between these models in terms of estimated prob-
abilities versus actual observed frequencies are shown in
Fig. 4; the figure shows estimated probabilities by presence
versus absence to show how well the models are correctly pre-
dicting regeneration presence as well as where it may be over-
predicting regeneration where it is actually absent.

Model validation and forecasting

The leave-one-out cross-validation procedure showed
good agreement between the predicted classes and empirical
distributions of regeneration frequencies across fires, as
shown in the reliability diagram (Fig. 5a). Most fires were
variously slightly over- or under-predicted across classes,
and none were consistently over- or under-predicted across
all categories or by more than one class. The distributions of
observed frequencies per predictive category per fire
(Fig. 5a) demonstrate the amount of variability to expect in
the probability of regeneration in a future fire. For example,
at locations with a predicted probability of regeneration in
the lowest category, one should expect regeneration levels
between 1% and 28% most of the time although there is still
a small chance that the probability could be as low as 0%
and as high as 38%. Fig. 5b and Table 3 also show the range

of observed densities across all of the 24 fires used to build
the forecast model, by the predicted probability class. For
the same locations in the lowest category, one can expect a
range of densities from 0 to 14,666 seedlings/ha, with a med-
ian value of 66. Forecasting the probability of observing at
least one seedling in a 60-m2 area at five years postfire across
a “new” fire event (the 2014 King Fire) predicted ~33% of
the fire area, or 12,975 hectares, in the two lowest probabil-
ity classes (Fig. 5).

DISCUSSION

Continuous burn severity, the kernel-based SAP, and
annual precipitation were the primary drivers of postfire
conifer regeneration across the 24 fires we assessed. It was
not surprising that precipitation was a major driver of regen-
eration patterns, since conifer seedlings are very sensitive to
soil moisture (USDA Forest Service 1990), particularly in a
Mediterranean climate. Snowpack can benefit Mediter-
ranean climate ecosystems by providing a slow release of
moisture in the spring and summer drought period. The
weak negative trend in our model is likely related to a corre-
lation with elevation, since our species of interest are gener-
ally found at lower elevations and may also be due to
decreasing growing season length and reduced productivity
at higher elevations. The negative effect of AETwas initially
surprising; since AET is usually considered a surrogate for
productivity, we expected to see a positive relationship with
regeneration probability. With more investigation, we found
that the effect of AET varies somewhat with time since fire.
On older fires (measured ≥5 yr postfire), regeneration proba-
bilities declined with higher AET values (>450 mm), and

FIG. 4. Estimated model probabilities for four models, where
the estimated probabilities of observing at least one conifer in a 60-
m2 area for each model are shown for plots where conifers were
absent (gray boxes) and where they were present (white boxes). The
forecast models differ by the variable representing seed availability:
the kernel-based SAP with a 150-m neighborhood, Euclidean dis-
tance, and field-derived distance to seed tree. The full field model
includes field-derived distance to seed tree as well as shrub cover,
litter cover, and live tree basal area. Dashed lines show the median
fitted values for the forecast model in comparison with all other
models. The boxes define the first quartile (25th percentile) and
third quartile (75th percentile), and the line within the box defines
the median. The whiskers extend to the highest value that is within
1.5 times the interquartile range, and the dots are outliers that
exceed this distance from the quartiles. The Akaike information
criterion (AIC) for each model appear at the top of the graph.
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this trend was strongest on the oldest fires and as PPT
increased. In contrast, on fires measured <5 yr postfire,
there was a positive effect on regeneration probabilities at
both moderate (300–450 mm) and high AET values. We
hypothesize that the increased productivity associated with
increasing AET is having a disproportionate, positive effect
on competing vegetation (shrub, grass, hardwood). The
longer the time since fire, the more the time for other vegeta-
tion to grow and become more competitive with conifer
seedlings. Exploratory models of the relationship of shrub
cover with AET were weak, but did support this hypothesis.
Although competition from shrubs and sprouting trees may
have less of an effect in some systems (Owen et al. 2017), it

FIG. 5. Predictive map showing the probability of observing at least one regenerating conifer at the 60-m2 (field plot) scale for the 2014
King Fire on the Eldorado National Forest. (a) The reliability diagram is created from the leave-one-out model validation procedure, where
each fire is held out and predicted by the remaining 23 fires. The predictions are then binned into five classes, shown on the x-axis, and the
actual frequency of conifer regeneration per fire within each class is plotted on the y-axis. (b) It shows the range of actual observed densities
per fire across these same classes. Outliers exceeding 15,000 seedlings/ha were excluded for plot readability. For both, the boxes define the
first quartile (25th percentile) and third quartile (75th percentile), and the line within the box defines the median. The whiskers extend to the
highest value that is within 1.5 times the interquartile range, and the dots are outliers that exceed this distance from the quartiles.

TABLE 3. Minimum, maximum, median, mean, and standard error
(SE) of observed conifer seedlings/ha for all 24 wildfires included
in the forecast model by predicted probability class.

Predicted
probability
class

Observed densities (seedlings/ha)

Minimum Maximum Median Mean (SE)

0.0–0.2 0 14,666 0 144 (86)
0.2–0.4 0 15,333 0 317 (55)
0.4–0.6 0 17,166 166 672 (101)
0.6–0.8 0 380,166 333 3,665 (985)
0.8–1.0 0 201,666 1,333 6,301 (755)

Notes: The model is at least one conifer. Seedlings were rounded
down to whole number.
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is generally associated with reductions in conifer regenera-
tion in the mixed conifer systems of California (Collins and
Roller 2013, Welch et al. 2016, Safford and Stevens 2017,
Tepley et al. 2017).
When scaling from the plot scale to the landscape scale in

a forecasting framework, the kernel-based SAP did not per-
form as well as field-derived distance to seed tree but per-
formed better than models with no spatial term or
Euclidean distance. This suggests that the kernel-based
SAPs are a reasonable proxy for neighborhood seed avail-
ability. The increased performance is likely due in part to the
ability of the kernel-based SAPs to account for patch config-
uration and its neighborhood effect, rather than the more
one-dimensional Euclidean distance. The 150-m neighbor-
hood (or bandwidth) SAP is somewhat larger than the “rule
of thumb” for dispersal in these systems, which holds that
most seeds generally disperse within one to two tree heights
of the parent tree (McDonald 1980); the tallest trees tend to
be 40–50 m in these ecosystems. We speculate that there are
likely several factors at work here. First, this rule of thumb
does not incorporate long-distance seed dispersal, which is
less common but likely important for regeneration patterns,
especially for the pine species that have significant animal
dispersal (Clark et al. 1999, Vander Wall 2008). Work else-
where in the western United States has documented at least
some regeneration at much greater distances from patch
edges, for example up to 400 m in Ziegler et al. (2017) and
Owen et al. (2017). In addition, the larger neighborhood
may also be the result of lumping five species with a range
of seed sizes: species such as white fir and incense-cedar pro-
duce lighter seeds that can travel notably farther than the
heavier seeded pine species (Safford and Stevens 2017). In
addition, as a proxy based on remote sensing, it is likely that
there are live trees in areas that were not detected by
LEMMA, many of which may occur near the edge of a
high-severity patch that are contributing to the seed rain.
That distance to seed source is a major driver (and limita-

tion) for postfire conifer regeneration patterns is echoed in
other studies in similar systems (Greene and Johnson 2000,
Bonnet et al. 2005, Franklin and Bergman 2011, Collins and
Roller 2013, Dodson and Root 2013, Harvey et al. 2016,
Kemp et al. 2016, Welch et al. 2016). Our documentation of
these patterns is not novel, but it is unique in its scope (1,848
field plots in 24 wildfires throughout California) and in our
explicit consideration of the neighborhood as a means to
scale plot-level data to the landscape. Although one other
study also used kernel-based methods to examine the impor-
tance of neighborhood characteristics (Haire and McGarigal
2010), our study develops a novel approach by creating a
contiguous surface from these kernels that can be used to
help predict regeneration across a new fire event.
An additional primary driver of regeneration probability

was continuous burn severity (IA). Burn severity (IA) was
correlated with the kernel-based SAP because the areas of
highest burn severity are often far from live trees, which also
results in lower potential seed availability. However, we
retained burn severity in the model because we believe the
severity of an individual pixel and potential for seed rain do
represent different phenomena, despite their close relation-
ship. The discrete values of RdNBR are important because
even within a high-severity patch, pixels with lower burn

severity values are more likely to have a live tree that sur-
vived the fire, which may not be detected in the SAP. Sec-
ond, the satellite-derived measurements of burn severity
may indirectly reflect other ecologically important metrics,
including amount of fuel consumption and soil heating,
which could have subsequent effects on the soil surface,
underground processes, and microclimates that can affect
regeneration (Miller and Thode 2007).
The predicted spatial patterns of regeneration at five years

postfire on the King Fire suggest that patch configuration
and size are critical for postfire conifer regeneration proba-
bilities. Approximately one-third of the fire area (12,975 ha)
is in the two lowest prediction classes, most of which occurs
in the large contiguous patch of high severity that is more
seed limited. Some research suggests that overstory recruit-
ment occurs on decadal scales, so these patterns may change
with time (Russell et al. 1998, Haire and McGarigal 2010).
Haire and McGarigal (2010) have also shown that recolo-
nization of the foundation tree species generally occurs in a
wave-like front, where seedlings establish somewhat near
parent trees, grow, and themselves disperse seeds further
into patch interiors. Our spatially explicit forecast model
suggests the same trend, where probabilities were higher
nearer to the lesser burned edge. However, the applicability
of these studies to modern fires is limited because they
focused on much smaller patches of high severity than are
occurring in more recent fires in the region, which can be
thousands of hectares in size (e.g., the 2013 Rim Fire, 2014
King Fire). Maximum fire size in the study by Russell et al.
(1998) was 100 ha, and the maximum individual high-sever-
ity patch size examined by Haire and McGarigal (2010) was
947 ha. In larger high-severity patches, regeneration via the
wave-like front would likely require even longer timescales.
During this time, the warming climate may compress the
regeneration niche for the current conifer dominants,
increasing the potential for type conversions (Feddema et al.
2013, Savage et al. 2013, Bell et al. 2014, Petrie et al. 2017).
However, our understanding of the relationship between
regeneration and climate drivers is limited (Petrie et al.
2016), and these relationships can be modified by other dri-
vers (Dobrowski et al. 2015).
Because the low probabilities of regeneration are driven in

part by proximity to seed sources, our results suggest that for-
est restoration treatments designed to reduce fuels, and in
turn reduce fire severity and the size of individual high-sever-
ity patches, could affect postfire trajectories for stand devel-
opment (Stephens et al. 2016). In addition to minimizing
distance to seed source, such treatments could also buffer
against drastic changes to the regeneration niche by retaining
some forest canopy cover, which has an important moderat-
ing influence on realized climate at the soil surface and can
increase seedling survival (Dobrowski et al. 2015).
It is important to note that within some areas with low

regeneration probabilities, there are potentially areas that
were not forested historically, because they are less suitable
sites from the standpoint of precipitation or AET, or they
may be sites that are physiographically prone to severe fire
(windward, south- or west-facing upper slopes, for example).
It is possible that these areas are only currently forested as a
result of a century of fire exclusion, which enabled tree
expansion into previously unsuitable habitats (Nagel and
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Taylor 2005). For example, one of the smaller high-severity
patches (~400 ha) at the southern end of the King Fire is
primarily in the lowest probability class, because despite
having relatively high seed input, the annual precipitation
values at that location are very low. In general, areas where
a lack of regeneration may not be of great concern could be
inferred by annual precipitation and topographic position.
It is also important to consider what level of regeneration

probability across these large patches is sufficient to restore
historical forest densities that are likely more resilient to
wildfire, pests, and the changing climate. For example, of the
18,272 ha that burned severely in the King Fire, 2,304 ha
are in the lowest (0–20% probability) predicted class for
observing at least one seedling per 60 m2 and 9,199 ha are
in the second lowest (20–40% probability) predicted class,
most of which occurs in the large, interior high-severity
patch (Fig. 5). Based on observed seedling densities in these
classes, one can expect a variable response, with means at
144 � 86 seedlings/ha in the lowest class and 317 � 55 seed-
lings/ha in the second to lowest class (Table 3, Fig. 5b; mean
� SE). Median responses for both of these classes were 0
seedlings/ha, and the percentile distributions of the observed
data show that one can expect 0 seedlings/ha for ~80% of
the area in the lowest class (Table 3, Fig. 5b). Moreover,
many of the seedlings observed in this study were fairly
young, which also has implications for likelihood of refor-
estation, since young seedlings can suffer high mortality in
the usually dry Mediterranean climate summer (Fowells and
Stark 1965). Although the bud scar method we used is an
imperfect measure of seedling age, it gives us a general idea
about age structure (i.e., there may be some error in the age
estimates, but it is unlikely that any of the seedlings recorded
as three years old were actually first-year seedlings, for
example). In the high-severity areas measured in this study,
over 70% of the seedlings observed were ≤3 yr old. First-
year seedling mortality is highly dependent on site condi-
tions and species, where pines on favorable sites can have
mortality rates as low as ~50%, but average mortality rates
across species and sites can be as high as 80% (Fowells and
Stark 1965). Mortality of first-year seedlings in high-severity
areas may be even higher, since the study by Fowells and
Stark (1965) used exclosures on all sites and managed com-
peting vegetation on a subset of them. Another study that
tracked seedlings through time found that mortality rates by
year three can range from 57% to 70% of the initial seedling
population (Fowells and Schubert 1951). Given the high
percentage of young seedlings in the data set, it is likely that
some of the regeneration predicted at five years postfire will
not survive into the future. In addition, the model also
shows significant decreases in regeneration probabilities on
older fires, likely reflecting declines with increased shrub
dominance. It is also important to recall that although the
maps we produced capture some of the spatial variation in
seedling response, because we binned the predictions into
five classes, some of this variation is lost. The means are
averaging over areas with very low probabilities (and subse-
quently, densities) that are far from residuals tree seed
sources, and areas with slightly higher probabilities/densities
that are closer to patch edges. Given the potential for mor-
tality and decreases in density through time, the observed
regeneration densities in these lower probability classes may

not be adequate to create a forest that resembles historical
forest densities, at least in some areas (Collins et al. 2011,
Safford and Stevens 2017), or meet desired management
conditions. However, more recruitment could occur through
time, which could also be timed with conditions that pro-
mote greater survival (such as more favorable weather in the
first few years postfire); in this case, even when accounting
for probable mortality, the remaining seedling densities
would be more likely to achieve historical densities. More
research on recruitment trends through time in severely
burned areas could better inform possible trajectories.
Forest managers using this tool for reforestation planning

will also want to consider where seedling densities may be
too high. In the King Fire, areas in the 80–100% category
had an observed median density of 4,458 seedlings/ha, which
is likely too high to create fire- or drought-resilient forests,
even if there is notable seedling mortality over time (Lyder-
sen et al. 2014, Young et al. 2017). Given that this class is
located mostly in lower-severity areas that also have an
intact overstory, seedling densities in these areas could result
in overly dense forests that are highly susceptible to water
stress, fire, and insect and disease outbreaks unless thinning
disturbances are permitted to occur, such as regular fires or
fire surrogates (e.g., mechanical or hand thinning).

Model limitations

There are numerous assumptions in our model as well as
sources of uncertainty. First, the kernel-based SAPs were
based on LEMMAmap products, which are themselves mod-
eled using FIA plots found at low density across the landscape
(Ohmann et al. 2014). In addition, although we calculated
annual seed production, this approach does not explicitly
model seed dispersal. Although there is some disagreement
on the best shape of a dispersal kernel, none have suggested
using a Gaussian distribution, which we used here. The log-
normal and a “fat-tailed” kernel are considered more accurate
representations of seed dispersal (Clark et al. 1999, Greene
and Johnson 2000), but these shapes are not readily available
for kernel interpolations across a landscape in ArcMap. Sensi-
tivity analyses on surfaces produced with the other available
kernel shapes (Exponential, Quartic, Constant, Polynomial,
Epanechnikov) showed little change in the models; this is
likely due to our use of the kernel at each 30-m pixel, rather
than centering the kernels on individual trees dispersing seeds.
Stem mapping by species and size class would be required to
truly map and predict seed dispersal, but this is likely too
intensive to be practical at these scales since detailed stand
structure data at the scale of an entire fire are generally lack-
ing, and distinguishing species with publicly available remote
sensing techniques is not sufficiently reliable at this point.
Another limitation of our model is our inability to predict

temporal variations in postfire weather patterns and mast-
ing. The timing and occurrence of favorable weather condi-
tions and mast-year seed production could have a
substantial impact on regeneration patterns (Brown 2006,
Keyes and Gonz�alez 2015, Rother and Veblen 2017).
Although we could include postfire weather patterns for the
fires studied here, we could not translate them into a fore-
casting framework because we cannot reliably predict
annual weather patterns into the future. In addition,
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masting patterns vary within species across their range, yet
detailed data on mast years after the fires studied here are
unavailable. Even if they were, it would also be difficult to
predict masting into the future for a forecast model. Future
work could create a suite of models that assumed favorable
versus unfavorable conditions and variable masting patterns,
to show a range of possible outcomes.
We also assume that lumping together conifer species with

different shade, drought, and fire tolerances, which
increased our sample size of actual observations, also proba-
bly muted some responses. For example, the best SAP scale
for predicting regeneration may vary by species due to dif-
ferences in seed size and morphology. Future work will
examine the dominant conifer species separately and com-
pare differences in response to the individual variables. We
also lumped all age classes of observed regeneration; how-
ever, we know that mortality of first-year seedlings is partic-
ularly high and that prediction of established seedlings
(perhaps >3 yr old) would give a better indication of future
reforestation patterns and densities. We explored models
predicting established seedlings, but they performed very
poorly. We hypothesize this is because survival and estab-
lishment are likely more tied to localized competition and
microsite characteristics, features that we are unable to
model at the landscape scale.
Finally, this model should not be applied in regions out-

side of the mixed conifer forests of California, because the
predictions are based on regional relationships between
regeneration probability and predictors. However, the
framework we used for modeling, including the creation of
SAPs to represent seed availability, could be used to create
models for non-serotinous forest types in other regions
where robust regeneration data sets exist.

MANAGEMENT APPLICATIONS

This spatially explicit predictive model can aid managers of
non-serotinous yellow pine and mixed conifer forests in Cali-
fornia and neighboring parts of the North American Mediter-
ranean climate zone to predict where postfire regeneration five
years after fire is likely to meet, or not meet, management tar-
get densities. Prediction maps such as the one shown in Fig. 5
can help identify areas where regeneration probabilities are
lowest and can be used to prioritize limited resources for
planting when managers decide to actively reforest an area.
Because of the size of the sampling unit and presence/absence
approach, the model predicts the probability of observing one
conifer seedling, of any of the six focal species, in a 60-m2 area.
To translate that to something more meaningful for manage-
ment decision making, managers can refer to Table 3 and
Fig. 5b, which shows the range of observed seedling densities
across fires within each probability class. The median values
may be especially useful where land managers are relying on
seedling stocking guidelines that require at least 50% of the
area of interest exhibit regeneration (Welch et al. 2016). At
the scale of the landscape, this model can help managers bet-
ter anticipate variability for long-term planning.
Because there is always variability on the ground, we rec-

ommend that managers use this model in concert with the
field tool and protocol developed by Welch et al. (2016).
Their tool outlines field-observed characteristics that can be

used to locally fine-tune the predictions from the forecast
map generated by our study.

CONCLUSIONS

The spatially explicit model developed in this study high-
lights the variability in regeneration potential across a
burned landscape. The probability of successful germination
and regeneration is modified by climatic and topographic
characteristics, but the most limiting factor for regeneration
is the critical, initial biological filter of seed availability. We
found that remote sensing-based proxies for seed source
(burn severity and the kernel-based SAP) were reasonable
approximations for field-derived seed sources measurements
for modeling at the landscape scale.
The results of this modeling emphasize the importance of

forest restoration treatments that can help limit high-severity
patch size and increase forest resilience to wildfire (Ful�e et al.
2012, Stephens et al. 2013). Predicted seedling densities from
our modeling show that without management intervention,
the largest high-severity patch in the King Fire could remain
shrub dominated for an extended period. Where forest persis-
tence is desired, restoration treatments in live forests that are
designed to reduce high-severity patch sizes when fire does
occur may be the most effective approach. In addition to
maintaining forested conditions where desired, reducing indi-
vidual patch sizes of high severity can promote habitat
heterogeneity across the landscape, thereby benefitting a
wider suite of species and ecosystem services (Turner 2010,
North et al. 2012, Mallek et al. 2013, Turner et al. 2013).
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