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Abstract. Large, severe fires are becoming more frequent in many forest types across the
western United States and have resulted in tree mortality across tens of thousands of hectares.
Conifer regeneration in these areas is limited because seeds must travel long distances to reach
the interior of large burned patches and establishment is jeopardized by increasingly hot and
dry conditions. To better inform postfire management in low elevation forests of California,
USA, we collected 5-yr postfire recovery data from 1,234 study plots in 19 wildfires that
burned from 2004–2012 and 18 yrs of seed production data from 216 seed fall traps (1999–
2017). We used these data in conjunction with spatially extensive climate, topography, forest
composition, and burn severity surfaces to construct taxon-specific, spatially explicit models
of conifer regeneration that incorporate climate conditions and seed availability during postfire
recovery windows. We found that after accounting for other predictors both postfire and his-
torical precipitation were strong predictors of regeneration, suggesting that both direct effects
of postfire moisture conditions and biological inertia from historical climate may play a role in
regeneration. Alternatively, postfire regeneration may simply be driven by postfire climate and
apparent relationships with historical climate could be spurious. The estimated sensitivity of
regeneration to postfire seed availability was strongest in firs and all conifers combined and
weaker in pines. Seed production exhibited high temporal variability with seed production
varying by over two orders of magnitude among years. Our models indicate that during
droughts postfire conifer regeneration declines most substantially in low-to-moderate elevation
forests. These findings enhance our mechanistic understanding of forecasted and historically
documented shifts in the distribution of trees.

Key words: drought stress; ecosystem management; fire effects; postfire conifer regeneration; resilience;
tree reproduction.

INTRODUCTION

Recovery of coniferous forests in the western United
States following high-severity fire largely depends on the
arrival of seeds into environments that allow for germi-
nation and seedling development. Unlike many hard-
woods, the vast majority of conifers in this region lack
the capacity to resprout after fire (Pausas and Keeley
2017) and thus are dependent on seedling recruitment
for persistence after fires (obligate seeders). Other

adaptations to recovery following fire (e.g., serotiny and
soil seed banks) are uncommon in western U.S. conifers.
As a result, seeds must often travel long distances to
recolonize large, high-severity, fire patches (Haire and
McGarigal 2010, Chambers et al. 2016, Stevens et al.
2017). However, typical dispersal distances of conifers
are relatively short, with most conifer seedling recruit-
ment occurring within 60 m of surviving trees (Rother
and Veblen 2016, Welch et al. 2016), although long-dis-
tance (e.g., >200 m) dispersal is possible (Kemp et al.
2016). Following dispersal seeds must then germinate,
and seedlings must become established and grow for for-
est recovery to take place. Seedlings lack extensive
reserves, so seedling growth and survivorship is expected
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to be sensitive to postfire environmental conditions. As a
result, recruitment of conifers in postfire areas can be
limited by local site conditions, such as soil conditions,
topography, and moisture (Gray et al. 2005, Dobrowski
2011, Puhlick et al. 2012, Dobrowski et al. 2015).
Fire size, frequency, overall area burned, and severity

have increased over the past several decades across many
vegetation types in the western United States (Franco
et al. 2006, Miller et al. 2009b, Mallek et al. 2013, Wil-
liams et al. 2013, Dennison et al. 2014, O’Connor et al.
2014, Kitzberger et al. 2017). The underlying factors that
have led to increasing fire impacts in historically high-
frequency/low-severity coniferous forests in the western
United States include increased fuel loading from accu-
mulation of surface and ladder fuels that have acceler-
ated fire spread and intensity, largely from the past
legacy of land use involving timber harvest, excessive
grazing and, importantly, fire exclusion (Allen et al.
2002, Attiwill and Binkley 2013, Keeley and Safford
2016). These impacts have been exacerbated by changing
climates that promote fire spread (Abatzoglou and Wil-
liams 2016). Climatic shifts can also interact with local
site conditions as well as fire severity to further reduce
seedling establishment (Tepley et al. 2017, Davis et al.
2019), resulting in landscape scale limitation to postfire
recovery in conifer forests in the western United States
(Savage et al. 2013).
Multiple studies have documented conifer recruitment

failure following large, severe fire in western coniferous
forests (e.g., Goforth and Minnich 2008, Falk 2013,
Coop et al. 2016). In contrast, hardwood species in these
forests (primarily Quercus spp.) have the ability to
resprout following top-kill by fire, potentially leading to
the conversion of conifer forests to other vegetation
types, including broadleaf vegetation or grasslands (a
process variously called “ecosystem transformation,”
“vegetation type conversion,” as well as other terms;
Keeley and Brennan 2012, Millar and Stephenson 2015).
Such postfire vegetative restructuring drives changes in
important ecosystem services (e.g., wildlife habitat, soil
stability, carbon sequestration; Hurteau et al. 2014,
Coop et al. 2016, Seidl et al. 2016). However, such shifts
in species composition may also represent transition to
an ecosystem state that may be ultimately more resilient
to warmer, drier environments and greater disturbance
frequencies (McWethy et al. 2019).
The increased incidence of high-severity fires followed

by limited conifer recruitment poses serious challenges
to forest managers. In this era of “megadisturbances”
managers need to develop new insights, strategies, and
tools to allow forests to adjust to these changing condi-
tions (Millar and Stephenson 2015). These approaches
are often centered on increasing disturbance resistance
(remaining unchanged in the face of disturbance) and re-
silience (forest recovery to pre-disturbance composition
or structure). Forest managers may be able to better plan
for and promote resilience with the aid of spatially expli-
cit forecasts of recruitment following high severity fire

(e.g., identifying sites and conditions that are at high risk
for conifer recruitment failure that may be targeted for
postfire management, seeding or planting).
In the low-elevation mixed conifer forests of Califor-

nia, broad patterns of postfire regeneration appear to be
related to fire severity, land-use history, precipitation,
distance to seed source, and other site-specific condi-
tions (e.g., slope, vegetation type; Welch et al. 2016).
Recently, Shive et al. (2018) developed a spatially explicit
forecast model of natural postfire regeneration for mixed
conifer forests of California and found regeneration
probabilities to depend primarily on historical climate
averages and estimated seed availability. This model did
not incorporate potential effects of fluctuations in post-
fire climate and seed availability during the initial post-
fire regeneration window. However, conifer seed
production is characterized by large fluctuations in
annual seed output (Kelly and Sork 2002), which has the
potential to influence postfire regeneration (Peters et al.
2005, Wright et al. 2014). Further, work by Young et al.
(2019), using much of the same forest regeneration data
as Shive et al. (2018), showed that at least under some
circumstances recruitment was dependent on short-term
(3 yr) postfire patterns of precipitation. These results
suggest that the model presented by Shive et al. (2018)
might be improved by incorporating postfire conditions.
Here, we ask how postfire fluctuations in climate and

seed production affect regeneration for a suite of conifer
species, and discuss the management implications. We
analyze these dynamics by extending the model pre-
sented in Shive et al. (2018) to account for these fluctua-
tions and by tailoring the model to provide taxon-
specific predictions for firs and pines. We hypothesized
that (1) more xeric postfire conditions are associated
with lower probability of conifer regeneration and (2)
including metrics of postfire climate will improve model
performance relative to models premised on historical
climate (i.e., Shive et al. 2018). Additionally, we quantify
temporal variation in conifer seed production and its
potential impact on postfire regeneration. While we can-
not predict the postfire environment with certainty, pro-
ducing a set of prediction maps that span a range of
plausible postfire conditions could significantly improve
management planning. For example, managers may wish
to plan for a range of postfire conditions or emphasize
scenarios where drought is more intense and frequent.
These scenarios provide a glimpse of a process by which
forests may change in response to future conditions
(Thorne et al. 2018) when recent droughts could be simi-
lar to the expected average climate.

METHODS

Study system

We modeled postfire regeneration in yellow pine and
mixed-conifer forests in California, USA. The climate of
the region is Mediterranean with mean annual
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precipitation ranging from 536 to 2,144 mm
(Appendix S1: Table S1). Forests in this region are pri-
marily composed of ponderosa pine (Pinus ponderosa),
Jeffrey pine (P. jeffreyi), white fir (Abies concolor),
incense cedar (Calocedrus decurrens), Douglas-fir (Pseu-
dotsuga menziesii), sugar pine (P. lambertiana), and black
oak (Quercus kelloggii). Prior to European colonization,
these forests typically burned at intervals of 11–16 yr,
but many sites have experienced fire exclusion over the
last century (Safford and Stevens 2017). We incorpo-
rated data from 19 separate fires occurring between 2004
and 2012 in these forests, with fire elevations ranging
from 245 to 2,600 m and fire areas from 940 to
40,860 ha (Fig. 1, Appendix S1: Tables S1, S2).

Seed production measurements

We used annual seed production data from seed fall
traps located in long-term forest demography plots (Das
et al. 2016) in Yosemite and Sequoia National Parks to
assess natural variability in seed production. Plots were
generally 1 ha in area. The plots were further divided
into 25-m2 subplots, with nine 0.25-m2 seed traps placed
in two or more interior subplots. Seeds produced from
1999 to 2017 were collected, taxonomically sorted, and
counted after spring snowmelt in the following year. We
selected 12 demography plots (216 seed fall traps) that
most closely matched the species composition and eleva-
tional range of the fires in our postfire regeneration
database and that had minimal missing data. The plots
were comprised primarily of white fir, ponderosa pine,
incense cedar, sugar pine, and Jeffrey pine
(Appendix S1: Table S3).

Postfire regeneration measurements

We aggregated postfire regeneration data collected by
Welch et al. (2016) and Young et al. (2019). Vegetation
measurements were taken in 60-m2 (4.4 m radius) plots
stratified across postfire landscapes. The plot size was
designed by Welch et al. (2016) to assess whether natural
regeneration achieved a target of approximately 175
seedlings/ha. Plot centers were located at the nodes of a
200-m grid, such that the closest possible distance
between plots was 200 m. To reduce model complexity
and standardize models, we used only data that were col-
lected during the fifth year after a fire burned
(N = 1,234), thereby eliminating the need to include
number of years postfire as a predictor variable. Previous
studies indicate that in this and similar systems the large
majority of postfire tree establishment usually occurs
within 5 yr following fire (Harvey et al. 2016, Tepley
et al. 2017, Urza and Sibold et al. 2017). We excluded
plots with evidence of management interventions,
including areas where cut stumps or regularly spaced
seedlings were seen during field sampling and areas
mapped as treated by the USFS Forest Activity Tracking
System database (USDA Forest Service 2016). For each
plot we determined if there was postfire recruitment in
three taxonomic categories: conifers, firs (Abies), and
pines (Pinus). Douglas-fir was not modeled as its own
category of recruitment because it was not well repre-
sented in seed production data from forest demography
plots. Following methods from Shive et al. (2018) plots
were considered to have postfire recruitment if they con-
tained at least one seedling (<1.37 m tall). Additionally,
because trees sometimes grow taller than 1.37 m within
5 yr of germination (Oliver and Dolph 1992), plots with
at least one sapling that germinated after the fire (i.e.,
age determined by bud scars) were considered to have
postfire conifer recruitment. Mean burn severity
(RdNBR) across all study plots was 534, which corre-
sponds to 57% loss of basal area (Appendix S1: Fig. S1)
and falls in the moderate severity class of Miller and
Thode (2007). Plots ranged in elevation from 480 to
2,522 m (Appendix S1: Tables S1).

Candidate predictor variables

To create models that can be applied across broad spa-
tial scales we selected candidate predictor variables that
may be derived from GIS and remote sensing products
as opposed to measurements that must be collected in
the field. Candidate predictor variables included indices
of long-term historical climate, short-term postfire cli-
mate, topography, burn severity, and seed availability.
Values for predictors were extracted from raster surfaces
using bilinear interpolation. We included a subset of pre-
dictors selected by Shive et al. (2018). Burn severity was
measured using the satellite-derived relative differenced
Normalized Burn Ratio (RdNBR; 30-m resolution;
Miller et al. 2009a, USDA Forest Service 2018). Slope

FIG. 1. Locations of 19 fires and 12 long-term forest
demography plots used in this study. Background color indi-
cates mean annual precipitation.
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and aspect were derived from 30-m resolution elevation
rasters (U.S. Geological Survey 2018). Long-term aver-
age (1981–2010) precipitation (PPT) and climate water
deficit (CWD) were extracted from 270-m resolution
Basin Characterization Model (BCM) rasters (Flint
et al. 2013, Thorne et al. 2015).
Seed availability predictors were calculated using 30-m

resolution interpolated maps of predicted basal area for
each conifer species (Ohmann et al. 2011). In the Sierra
Nevada, the coefficient of determination between pre-
dicted and observed conifer basal areawas 0.5811 (genus-
specific coefficients were not reported). To predict regen-
eration in fires that burned after the production of basal
area maps we used a logistic model fit to data fromMiller
et al. (2009b) to adjust basal area according to burn sever-
ity (Appendix S1: Fig. S1). We modified seed production
equations used by Shive et al. (2018) to account for non-
linear relationships between basal area and leaf mass and
between leaf mass and seed production (Greene and
Johnson 1994: Eqs. 2 and 5). Seed density estimates were
derived from seed production using a half-Gaussian dis-
persal kernel and a range of dispersal parameter (r) val-
ues ranging in 10-m intervals from 5 m to 195 m.
Average predicted seed density was then scaled to average
observed seed production from the seed trap data.
Short-term postfire climate candidate predictors con-

sisted of a modified version of predictors used by Young
et al. (2019). We calculated average annual (June–May)
and summer (June–September) precipitation for postfire
periods beginning immediately after the fire and ending 1,
2, 3, 4, or 5 yr following the fire. Mean postfire precipita-
tion was strongly correlated with mean historical precipi-
tation (Appendix S1: Table S4). Because the stress of a
single particularly dry year may be predictive, we also
examined minimum precipitation during the postfire per-
iod. In addition to raw precipitation values we considered
precipitation anomalies or departures from long-term
average precipitation at each site. We calculated anoma-
lies as z-scores, or the number of standard deviations
(with respect to historical interannual variation) that the
observation fell from the historical mean at the site.
Because stress resulting from the interaction of tempera-
ture, soil properties, and precipitation may affect recruit-
ment, we also tested models premised on postfire climatic
water deficit and summer vapor pressure deficit (VPD).
As we did with precipitation, we examined average and
maximum (most stressful year) values, raw values, and
anomalies. Postfire precipitation and climatic water deficit
were extracted from 270-m resolution BCM rasters (Flint
et al. 2013) and VPD was extracted from 4-km resolution
Parameter-elevation Regressions on Independent Slopes
Model (PRISM) rasters (Daly et al. 1994).

Statistical models

We used generalized additive models (Wood 2017) to
model the probability of postfire recruitment within
postfire regeneration plots. We constructed separate

models for three taxonomic categories: conifers, firs
(Abies), and pines (Pinus). Generalized additive models
provide estimates of effects of predictor variables and
variable interactions on the probability of regeneration
using smooth functions. To protect against developing
overfitted models, model performance was evaluated
using leave-one-fire-out cross-validation, wherein data
from one fire were iteratively excluded from model train-
ing and used for model evaluation. The pooled evalua-
tion data for all fires was then used to calculate the area
under the receiver operating characteristic curve (AUC)
and the classification error rate (CER). In addition to
these metrics we also visually examined marginal
response curves and reliability diagrams. To reduce
potential overfitting and simplify model interpretation
we constrained response functions for seed availability
and climate variables to monotonic functions by using
shape constrained splines or linear as opposed to
smoothed response when necessary (Pya and Wood
2015). All analyses were conducted in R version 3.5.1 (R
Core Team 2018). Generalized additive models and
shape constrained additive models were fit using the
mgcv version 1.8-28 and scam version 1.2-5 packages,
respectively (Pya and Wood 2015, Wood 2017).
Beginning with a subset of predictors selected by

Shive et al. (2018), we used a two-step model selection
process. Predictors initially included in the model were
mean historical precipitation, burn severity, seed avail-
ability, slope, and aspect. For each taxon we first selected
the seed dispersal kernel that resulted in the highest out-
of-sample AUC. We then compared the resulting mod-
els, which included mean historical precipitation and
non-climate variables (i.e., the baseline models) against
models that included postfire climate variables and mod-
els that included no historical or postfire climate. We
tested a total of 65 variable combinations, including
interactions between seed availability and precipitation
as well as between pre- and postfire precipitation
(Appendix S1: Table S5). Highly correlated (|q| > 0.65)
predictor variables were never included in the same
model. We examined semivariograms and calculated
Moran’s I statistics to detect potential spatial autocorre-
lation of model residuals between plots within each fire.
To examine the impact of variable precipitation and

seed production on conifer regeneration we used the
best-performing (highest AUC) all-conifer model to pro-
ject probability of postfire recruitment to the full spatial
extent of each of the 19 fires included in this study. We
used historical mean and a range of projected future
mean precipitation to represent high and low precipita-
tion scenarios for the postfire period (270-m resolution
BCM rasters). Dry conditions were represented by the
MIROC-ESM RCP8.5 scenario (Watanabe et al. 2011),
while relatively wet conditions were represented by the
CNRM-CM5 RCP8.5 scenario (Voldoire et al. 2013).
Seed production was scaled to periods of low, average,
and high seed production using the 10th percentile,
mean, and 90th percentile of the 5-yr moving mean of
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seed production. We also examined the predicted proba-
bility of postfire conifer recruitment with respect to ele-
vation and precipitation scenarios for a transect on the
west slope of the Sierra Nevada (latitude 38° N, longi-
tude 119.6°–121.1° W, elevation 25–2,543 m, distance
131.7 km). All non-climate variables on the transect
were held at the mean values of the postfire regeneration
data. We used California’s 2014 King Fire to visualize
spatial differences in projected recruitment under vari-
able postfire climate and seed production scenarios and
to make direct comparisons to the results presented in
Shive et al. (2018).

RESULTS

Seed production

Production of conifer seeds varied markedly between
years (Fig. 2). Median annual seed production in firs
(Abies) and pines (Pinus) was correlated (Spearman rank
correlation, q = 0.55, P < 0.05). Median conifer seed
production during the five years with the highest pro-
duction (2001, 2003, 2006, 2008, 2013; 377 seeds/m2)
exceeded median seed production during other years
(38.3 seeds/m2) by a factor of 9.85. Median seed produc-
tion for the year with highest production (2001,
568 seeds/m2) exceeded the year with the lowest produc-
tion (2000, 3.56 seeds/m2) by a factor of 160
(Appendix S1: Fig. S2). The mean, 10th percentile, and
90th percentile of the 5-yr moving mean of seed produc-
tion were, respectively, 176, 130, and 251 seeds/m2 (re-
sulting scaling factors for low, mean, and high seed
production periods were 0.740, 1.00, and 1.42).

Fir seeds were most abundant, comprising 77.9%
(133,666/171,629) of the total conifer seeds collected
from seed-fall traps but 46.6% of the basal area of coni-
fers in the surrounding plots. Among fir seeds, 50.1%
were identified to the species level, with the remaining
seeds identified to the genus level only. The five years
with the highest seed production for firs were the same
as for conifers as a whole and median fir seed production
during these years (307 seeds/m2) exceeded median seed
production during other years (15.1 seeds/m2) by a fac-
tor of 20.3. Median fir seed production for the year with
highest production (2001, 467 seeds/m2) exceeded the
year with the lowest production (2000, 1.33 seeds/m2) by
a factor of 350. The mean, 10th percentile, and 90th per-
centile of the 5-yr moving mean of fir seed production
were, respectively, 140, 102, and 216 seeds/m2 (resulting
scaling factors for low, mean, and high seed production
periods were 0.730, 1.00, and 1.54).
Pine seeds comprised 7.37% of total conifer seeds

(12,657/171,629) but 35.2% of conifer basal area in sur-
rounding plots. Among pine seeds, 80% were identified
to the species level, with the remaining seeds identified
to the genus level only. Median pine seed production
during the five years of highest production for pines
(2001, 2005, 2013, 2014, 2017; 12.6 seeds/m2) exceeded
median seed production during other years (1.56 seeds/
m2) by a factor of 8.07. Median seed production during
the year with the highest seed production (2001,
22.4 seeds/m2) exceeded the year with the lowest produc-
tion (1999, 0.556 seeds/m2) by a factor of 40.4. The
mean, 10th percentile, and 90th percentile of the 5-yr
moving mean of pine seed production were, respectively,
11.9, 8.47, and 15.6 seeds/m2 (resulting scaling factors

FIG. 2. Annual and taxonomic variation in conifer seed production in 12 study plots located in mixed-conifer forests of Yose-
mite and Sequoia National Parks. Seed production for each plot is the mean seed production across 18 seed traps stratified through-
out the plot. Relative seed production (right) is scaled to mean seed production for the taxon. Box plots depict median,
interquartile range, and Tukey-style whiskers (McGill et al. 1978).
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for low, mean, and high seed production periods were
0.711, 1.00, and 1.31).

Postfire recruitment models

We found that some models that included postfire cli-
mate modestly outperformed models with historical pre-
cipitation as the only climate variable (i.e., our baseline
models). However, performance differences were small
and the baseline models tended to outperform models
that included postfire climate as often as not. Postfire
climate variables that improved model performance for
one taxa sometimes resulted in decreased model perfor-
mance in another taxa. Three classes of postfire climate
variables contributed to models that outperformed his-
torical-precipitation-only models and had response
functions where wetter conditions led to higher probabil-
ity of regeneration. These included: mean annual post-
fire precipitation, annual postfire precipitation anomaly,
and minimum annual postfire precipitation anomaly
(Table 1). We did not detect evidence of residual spatial
autocorrelation within fires for any of the models
included in Table 1. Models that included both histori-
cal precipitation and other postfire climate variables
(i.e., maximum postfire climatic water deficit, mean
postfire summer vapor pressure deficit) sometimes also
achieved higher performance than historical-precipita-
tion-only models, however these models produced the
odd result of predicting higher regeneration when histor-
ical conditons were wetter but when postfire conditions
were drier. We excluded these models from Table 1

because they lacked mechanistic explanation. Given the
large number of postfire climate models tested (67) and
the multiple predictors in our models, some instances of
improved predictive performance over the historical-cli-
mate-only model may be due to chance or correlation
with other variables.
The model of conifer recruitment with the highest

AUC and lowest CER included mean postfire precipita-
tion in the 3-yr window following fire. Among the pre-
dictor variables, 3-yr postfire precipitation had the
greatest effect on recruitment, as measured by its pro-
portion of total chi-squared values (0.64). Precipitation,
burn severity, slope, and seed availability all had mono-
tonic marginal response curves (Fig. 3 and
Appendix S1: Fig. S3). Higher precipitation, lower burn
severity, lower slope, and higher seed availability resulted
in higher probabilities of recruitment (Appendix S1:
Figs. S3–S6). More north-facing aspects resulted in
higher probabilities of conifer recruitment. The best-per-
forming seed availability proxy used a half-Gaussian dis-
persal kernel with r = 35 m (mean dispersal distance of
28 m, 95% of seeds dispersing within 68.6 m of their
sources).
The model of fir recruitment with the highest AUC

was premised on mean historical precipitation and did
not include postfire climate. This model tied for the low-
est CER with a model that included mean postfire pre-
cipitation in the four-year window following fire.
Response curves for these and other variables were qual-
itatively similar to response curves for the conifer models
described above (Appendix S1: Figs. S7–S10). Among

TABLE 1. Comparisons of models of postfire recruitment premised on alternate climate variables for conifers, pines, and firs.

Response and model Climate variables in model AUC CER

Conifer recruitment
C1 mean PPT 0–3 yr postfire 0.7747 0.2869
C2 PPT anomaly 0–5 yr postfire, mean PPT 1981–2010 0.7728 0.2958
C3 mean PPT 1981–2010 0.7726 0.2934
C4 minimum PPT anomaly 0–2 yr postfire, mean PPT 1981–2010 0.7709 0.2942
C5 no climate 0.6502 0.3906

Fir recruitment
F1 mean PPT 1981–2010 0.8712 0.1750
F2 mean PPT 0–4 yr postfire 0.8702 0.1750
F3 PPT anomaly 0–5 yr postfire, mean PPT 1981–2010 0.8681 0.1767
F4 minimum PPT anomaly 0–5 yr postfire, mean PPT 1981–2010 0.8681 0.1831
F5 no climate 0.8099 0.2399

Pine recruitment
P1 PPT anomaly 0–3 yr postfire, mean PPT 1981–2010 0.6432 0.3476
P2 minimum PPT anomaly 0–5 yr postfire, mean PPT 1981–2010 0.6408 0.3582
P3 mean PPT 1981–2010 0.6400 0.3476
P4 mean PPT 0–5 yr postfire 0.6356 0.3476
P5 no climate 0.5589 0.3655

Notes: Models are ordered by their out-of-sample (leave-one-fire-out) area under the receiver operating characteristic curve
(AUC). Shown for each response variable are the best-performing (highest AUC) model that included the following climate vari-
ables: (1) mean annual postfire precipitation (C1, F2, P4), (2) mean annual postfire precipitation anomaly and mean historical pre-
cipitation (C2, F3, P1), (3) minimum annual postfire precipitation anomaly and mean historical precipitation (C4, F4, P2), (4)
mean historical precipitation (C3, F1, P3), and (5) no climate variables (C5, F5, P5). CER refers to classification error rate. PPT
refers to precipitation. Non-climate variables included in each model were seed availability, burn severity, slope, and aspect.
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the predictor variables, mean postfire precipitation,
mean historical precipitation, and seed availability had
the greatest effect on recruitment, as measured by their
proportion of total chi-squared. The best-performing
seed availability proxy used a half-Gaussian dispersal
kernel with r = 145 m (mean dispersal distance of
116 m, 95% of seeds dispersing within 284 m of their
sources).

The model of pine recruitment with the highest AUC
included postfire precipitation anomaly in the three-year
window following fire and mean historical precipitation.
This model tied with two other models for the lowest
CER. The other models that tied for lowest CER
included either mean precipitation in the five-year win-
dow following fire or mean historical precipitation.
Response curves for these and other variables were

FIG. 3. Marginal response curves for average postfire precipitation, postfire precipitation anomaly, and seed availability in coni-
fers, firs, and pines. Each curve depicts probability of regeneration as a function of one predictor when all other predictors are held
at their mean value. Gray bands depict two standard errors from the mean. Ticks along the x-axis depict the distribution of the pre-
dictor variable among the 1,234 plots. Shown are response curves premised on the top-performing model for each predictor
(Table 1). Marginal response curves for other models and variables may be found in supplementary materials (Appendix S1:
Figs. S3–S14).
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qualitatively similar to those described above, except
that burn severity had a hump-shaped marginal response
curve, with low to moderate burn severities resulting in
higher recruitment probability than high burn severity.
Among the predictor variables, mean postfire precipita-
tion, mean historical precipitation, and burn severity
had the greatest effect on recruitment, as measured by
their proportion of total chi-squared (Appendix S1:
Figs. S11–S14). The best-performing seed availability
proxy used a half-Gaussian dispersal kernel with r = 45
m (mean dispersal distance of 36 m, 95% of seeds dis-
persing within 88.2 m of their sources). The influence of
estimated seed availability on regeneration was strongest
in firs and all conifer combined and weaker in pines
(Fig. 3, Appendix S1: Figs. S3–S14).
The sensitivity of regeneration to postfire precipita-

tion varied among models and taxa. In the all-conifer
models, sensitivity of regeneration to postfire precipita-
tion was substantially higher in the model premised on
mean postfire precipitation compared to the model pre-
mised on mean postfire precipitation anomaly. In con-
trast, the pine model premised on postfire precipitation
anomaly was substantially more sensitive to postfire pre-
cipitation than the model premised on mean postfire
precipitation. In firs, sensitivity of regeneration to post-
fire precipitation was relatively consistent between the
postfire mean precipitation model and the postfire pre-
cipitation anomaly model. Differences in the sensitivity

of regeneration to postfire precipitation between models
(particularly among the all-conifer and pine models)
represent unresolved uncertainty in how these systems
respond to postfire climate.

Postfire regeneration scenarios

Predicted probability of conifer regeneration varied
markedly under scenarios of variable postfire precipita-
tion and seed production (Figs. 4 and 5, Appendix S1:
Figs. S15–S20). Using our model (Table 1, model C1) to
project conifer regeneration to the full spatial extent of
the 19 fires included in our data set, and using postfire
precipitation data for these fires, we project that 42.3%
of burned area (78,511 ha/185,448 ha) had no conifer
recruitment at a 60-m2 spatial resolution 5 yr after fire.
If mean precipitation following these fires had reflected
mean precipitation for the 1951–1980 period, we expect
that 35.6% of burned area would have had no conifer
recruitment (32.7% and 37.6% under high and low seed
production scenarios). Under a scenario of mean precip-
itation for the 1981–2010 period we expect that 36.1% of
burned area would have no recruitment (33.1% and
38.1% under high and low seed production scenarios).
Under average precipitation for the drier end-century
(2070–2099) scenario (MIROC-ESM RCP8.5) we expect
the percentage of burned area with no conifer recruit-
ment could reach 49.4% (45.8% and 51.9% under high

FIG. 4. Projected changes to conifer recruitment under future climate and seed production scenarios (Table 1, model C1). Left
panel: mean probability of postfire conifer recruitment across the full spatial extent of the 19 fires included in this study with respect
to historical and projected future mean precipitation and variable seed production. High and low seed production scenarios scale
seed production to the 0.9 and 0.1 quantiles of the 5-yr moving average of observed seed production. Other predictors were held at
their historical values. Right panel: probability of postfire conifer recruitment with respect to elevation for a transect of the west
slope of the Sierra Nevada (latitude = 38° N) under historical and projected future precipitation scenarios. Other predictors were
held at mean values from postfire recruitment plots. Legend abbreviations: SP, seed production; Hist., historical precipitation; Dry,
MIROC-ESM RCP8.5; Wet, CNRM-CM5 RCP 8.5.
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and low seed-production scenarios). Conversely, under
average conditions for the wetter end-century scenario
(CNRM-CM5 RCP8.5) we expect the percentage of
burned area with no conifer recruitment could decrease
to 31.3% (28.6% and 33.2% under high and low seed
production scenarios). Projected declines in conifer
regeneration under drought scenarios were especially
pronounced in low-to-moderate-elevation coniferous
forests (~500–1,300 m; Fig. 4).

DISCUSSION

This study advances previous research (Shive et al.
2018, Young et al. 2019) by incorporating postfire cli-
mate, postfire seed availability, and taxon-specific
responses into spatially explicit models of postfire coni-
fer regeneration. Overall, we found that models pre-
mised on postfire and historical precipitation performed
similarly. Models premised on postfire climate achieved
only modest improvements over models premised on his-
torical climate only. Given that historical and postfire
precipitation are highly correlated it may be difficult to

statistically distinguish which climate metrics are most
predictive. Postfire climate has a clear mechanistic con-
nection to regeneration because it reflects the actual abi-
otic conditions experienced by plants during the postfire
period. Historical climate could be important insofar as
it drives biological community composition and soil
conditions. Models that incorporate both historical cli-
mate and postfire climate anomaly offer a middle
ground where both the direct effects of postfire climate
and the indirect effects of historical climate can be
included. Results from these models (i.e., C2, F3, P1)
suggest that both postfire and historical climate may
contribute to regeneration success.
Several prior studies support the importance of post-

fire climate for tree regeneration, however there is no
clear consensus on which climate variables most influ-
ence regeneration patterns. Young et al. (2019), using
much of the same data as used in this paper, found that
minimum precipitation anomaly (i.e., driest year) during
the 3 yr following a fire was most predictive of regenera-
tion of white fir. Urza and Sibold (2017) found that
mean growing season precipitation during the 5 yr

FIG. 5. Postfire conifer recruitment scenarios for the 2014 King Fire, under scenarios of variable postfire precipitation and seed
production (Table 1, model C1). Reliability diagram in upper right is based on leave-one-fire-out cross-validation. High and low
postfire precipitation conditions depicted here correspond to mean annual precipitation for mid-century (2040–2069) under the
CNRM-CSM5 and MIROC-ESM scenarios, respectively. Mean precipitation was based on the period 1981–2010. Relative postfire
seed production scenarios correspond to the 0.1 and 0.9 quantiles of the 5-yr moving average of seed production measured in seed
traps (Fig. 2, Appendix S1: Fig. S2).
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following a fire was most predictive of regeneration in
western larch (Larix occidentalis), Engelmann spruce
(Picea engelmannii), and Douglas-fir, while winter pre-
cipitation during the 5 yr following a fire was most pre-
dictive in lodgepole pine (Pinus contorta). Davis et al.
(2019) found that three drought stress metrics (summer
VPD, soil moisture, and maximum surface temperature)
during the year of germination were strong drivers of
annual postfire recruitment in ponderosa pine and Dou-
glas-fir. Growing-season moisture conditions may be
especially important in preventing desiccation of first-
year seedlings (Moyes et al. 2013). Two studies found
that climatic water deficit anomaly during the 3 yr fol-
lowing a fire was negatively associated with regeneration
in a variety of conifer species (Harvey et al. 2016, Ste-
vens-Rumann et al. 2018), however these studies did not
assess other climate predictors. In contrast to these stud-
ies, Rodman et al. (2019) found that 3-yr postfire climate
(mean and anomaly of climatic water deficit and actual
evapotranspiration) did not improve predictions of
regeneration in ponderosa pine or Douglas-fir relative to
models that included historical mean climate. In our
own analyses we found modest support for only three
metrics of postfire climate: mean annual (June–May)
postfire precipitation, mean annual postfire precipitation
anomaly, and minimum annual postfire precipitation
anomaly. Consistent with previous studies, drier postfire
conditions were associated with lower probability of
recruitment. Our results support the importance of the
3–5 yr postfire climate period used by prior studies, with
potential variability in the length of the window between
taxonomic groups and ecological context.
Postfire recruitment models performed well for coni-

fers and firs and less well for pines. The best pine recruit-
ment models exhibited nearly twice the error rate (CER)
of the best fir models (Table 1). The relatively poor per-
formance of the pine models could be partially attributa-
ble to stronger intraspecific species interactions in pine
recruitment. For instance, pines in our region are gener-
ally more shade intolerant than fir species (Safford and
Stevens 2017) and are therefore more sensitive to compe-
tition. Higher rates of seed predation and seed dispersal
from animals (zoochory) in pines may also contribute to
the relatively poor performance of the pine models (Van-
der Wall 2002, Zwolak et al. 2010, Frock and Turner
2018). The influence of seed availability in the pine mod-
els was low relative to the all conifer and fir models
(Fig. 3, Appendix S1: Figs. S3–S14). This low sensitivity
to seed availability in pines may indicate there may be
unaccounted for factors in our modeled estimates of
pine seed availability. When making projections to new
fires (e.g., the King Fire) our model assumed uniform
mortality across taxonomic groups as a function of
RdNBR. Research that assesses taxon-specific mortality
to wildfire in the context of satellite-derived mortality
estimates could improve model predictions.
Though our results differ somewhat from a previous

analysis based on much of the same data as used in this

study (Young et al. 2019) our main finding of modest
support for the importance of postfire climate as a driver
of conifer regeneration is consistent with the previous
study. Noteworthy contrasts between our findings
include: (1) the seed availability proxy we used (modified
from Shive et al. 2018) improved performance of the
regeneration models where the seed availability proxy
used by Young et al. (2019) (distance to seed source) did
not; (2) while Young et al. (2019) found that 3-yr postfire
minimum precipitation anomaly (driest year) improved
predictions of white fir regeneration we found that this
variable worsened predictions of fir regeneration; (2)
while Young et al. (2019) found that postfire climate
variables worsened predictions of yellow pine regenera-
tion we found that 3-yr mean postfire precipitation
anomaly may improve (improved AUC, equal CER) pre-
dictions of pine regeneration relative to models premised
on historical precipitation. Differences may be attributa-
ble to non-identical (but overlapping) datasets as well as
differences in modeling approaches, response variables,
and model evaluation criteria. Whereas Young et al.
(2019) used linear models to analyze regeneration occur-
ring within two years after a fire in high-burn-severity
plots with nearby seed sources (N = 513), we used non-
linear models to analyze regeneration occurring within 5
yr after fire across the full range of seed availability and
burn severity (N = 1,234). While we evaluated model
performance using plot-specific performance metrics
(leave-one-fire-out AUC and CER), Young et al. (2019)
evaluated model performance using a fire-specific per-
formance metric (mean leave-one-fire-out mean absolute
value of the difference between the observed and pre-
dicted proportion of plots with regeneration in each
fire). Our analyses also differed in terms of the explana-
tory variables used. Our models used a more mechanistic
representation of seed availability (incorporating the
density and size of nearby trees as opposed to simply the
distance to the nearest reproductive tree), incorporated
burn severity as a predictor, and used alternative topo-
graphic metrics (slope and aspect as opposed to modeled
solar radiation). Our models likely detected an influence
of seed availability where the models of Young et al.
(2019) did not because of the more mechanistic represen-
tation of seed availability and larger range of values in
our data.
In this study we built correlative models with additive

effects to predict postfire regeneration. Integrating hier-
archical processes into the models could result in
improved model performance. For instance, recruitment
is biologically dependent on presence of seeds, and a
model that treats seed availability as necessary to recruit-
ment as opposed to an additive factor that influences
recruitment probability would more effectively capture
this biological process. Attempts to capture this effect
using interaction terms resulted in implausible and
apparently overfit response curves. The current models
result in unrealistic predictions of non-trivial recruit-
ment probability when estimated seed availability is zero.
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Perhaps due to rare long-distance dispersal events not
captured by our Gaussian kernels, regeneration can
occur at low levels far from seed sources, and climate
and topography can thus affect regeneration outcomes
even in the center of large, high-severity patches.
Improvements in the accuracy of predictor variables
could also lead to improved model performance. For
instance, empirical maps of postfire live tree size and dis-
tribution, as opposed to interpolated estimates could
improve the accuracy of the seed availability model.
Such detailed maps could be efficiently produced with
drone acquired imagery and automated image process-
ing (Michez et al. 2016, Fern�andez-Guisuraga et al.
2018).
Considering future scenarios, our model estimates

that over 42% of the area of the 19 fires included in this
study (784 km2) had no natural conifer regeneration,
emphasizing the need for postfire forest management
(e.g., seeding or planting) if the focus is to maintain
coniferous forests following large, high-severity fires.
The models are intended to aid management decisions
for postfire recovery planning (e.g., identifying sites and
conditions that are at high-risk for conifer recruitment
failure that may be targeted for postfire management).
By providing managers with a range of postfire regener-
ation scenarios the models may improve postfire man-
agement planning. To the degree that variability in near-
term climate and seed production is known, managers
can plan for anticipated conditions. Known patterns in
El Ni~no and Pacific Decadal Oscillations can facilitate
near-term (1–2-yr) climate predictions (Biondi et al.
2001, Chen et al. 2004). Similarly, flower and cone sur-
veys in conjunction with historical data may be used to
forecast seed production (Barnett 1999). As underscored
by Davis et al. (2019), successful regeneration may be
dependent on episodic seed production coinciding with
favorable weather conditions.
The sensitivity of predicted postfire regeneration to

variation in seed output highlights the idea that seed
production may partially determine postfire recovery.
Rapid seedling establishment may be important to capi-
talize on the period of reduced competition from other
vegetation (Gray et al. 2005, Tepley et al. 2017). Once
alternative vegetation types are established they may per-
sist, outcompeting conifer seedlings. For instance, com-
petition from shrubs tends to slow initial conifer
regeneration and may increase susceptibility to sec-
ondary stand-replacing fires that kill regenerating coni-
fers and maintain shrub dominance (Nagel and Taylor
2005, Lauvaux et al. 2016). Regenerating trees must
attain a sufficient size before they become resistant to
low-severity understory fires (Larson et al. 2013). Tem-
poral priority plays an important role in determining
long-term ecosystem trajectory (Young et al. 2015). In
this study, we used the 5-yr moving average of seed pro-
duction across 216 seed fall traps as an estimate of vari-
ability in postfire seed production. However, for reasons
discussed above, the importance of seed production to

conifer regeneration may decline each year after a fire.
To the extent that successful conifer regeneration is pri-
marily dependent on seed production during shorter
time windows following fire, our projections are likely to
underestimate the impact of variable seed production on
postfire regeneration (i.e., variability in seed production
is higher for shorter moving-average periods;
Appendix S1: Fig. S2).
The modern regime shift toward large, high-severity

fires with diminished postfire regeneration presents
managers with critical challenges. Maintaining forests
and preserving ecosystem services will require new
insights and proactive management (Millar and
Stephenson 2015). The models we developed here help
answer the questions of when and where postfire man-
agement interventions may be necessary to maintain
forests, but do not address questions of which species
or local genetic varieties will be most suited to persist
and maintain ecosystem services under climate change.
Depending on context, appropriate strategies may
involve (1) sourcing seeds from locations where popu-
lations are better adapted to current and future cli-
mate (e.g., moving seeds upslope), (2) promoting
transition to desirable species compositions that may
be better adapted to climate change (e.g., more
drought-tolerant native conifer species), and (3) allow-
ing ecosystems transitions to unfold on their own
(e.g., natural transition to grassland, shrub, or oak
dominated types). While some work provides insight
into these approaches (Wang et al. 2010, Thorne et al.
2018, McWethy et al. 2019), more research is neces-
sary to understand the context-dependent effects of
these strategies and how they can be most effectively
implemented.

ACKNOWLEDGMENTS

We thank J. Miller for providing data used to model loss of
basal area as a continuous function of RdNBR. This research
was funded by the U.S. Geological Survey (USGS) Southwest
Climate Adaptation Science Center, USGS Ecosystems Mission
Area, and USGS Land Change Science Program; USDA For-
rest Service, Agreement No. 18-JV-11272138-064; and Califor-
nia Department of Forestry and Fire Protection, Agreement
No. 8CA04059. Any use of trade, firm, or product names is for
descriptive purposes only and does not imply endorsement by
the U.S. Government.

LITERATURE CITED

Abatzoglou, J. T., and A. P. Williams. 2016. Impact of anthro-
pogenic climate change on wildfire across western US forests.
Proceedings of the National Academy of Sciences USA
113:11770–11775.

Allen, C. D., M. Savage, D. A. Falk, K. F. Suckling, T. W. Swet-
nam, T. Schulke, P. B. Stacey, P. Morgan, M. Hoffman, and J.
T. Klingel. 2002. Ecological restoration of southwestern pon-
derosa pine ecosystems: a broad perspective. Ecological
Applications 12:1418–1433.

Attiwill, P., and D. Binkley. 2013. Exploring the mega-fire real-
ity: a ‘forest ecology and management’ conference. Forest
Ecology and Management 294:1–3.

April 2021 DRIVERS OF POSTFIRE FOREST REGENERATION Article e02280; page 11



Barnett, J. P. 1999. Guidelines for estimating cone and seed
yields of southern pines. Pages 31–35 in M. Born, M. Stine,
compl. Proceedings of the 25th Biennial Southem Forest Tree
Improvement Conference. 2014 July 11–14. New Orleans,
Louisiana, USA.

Biondi, F., A. Gershunov, and D. R. Cayan. 2001. North Pacific
decadal climate variability since 1661. Journal of Climate
14:5–10.

Chambers, M. E., P. J. Fornwalt, S. L. Malone, and M. A. Bat-
taglia. 2016. Patterns of conifer regeneration following high
severity wildfire in ponderosa pine-dominated forests of the
Colorado Front Range. Forest Ecology and Management
378:57–67.

Chen, D., M. A. Cane, A. Kaplan, S. E. Zebian, and D. Huang.
2004. Predictability of El Nino in the past 148 years. Nature
428:733–736.

Coop, J. D., S. A. Parks, S. R. McClernan, and L. M. Holsinger.
2016. Influences of prior wildfires on vegetation response to
subsequent fire in a reburned southwestern landscape. Eco-
logical Applications 26:346–354.

Daly, C., R. P. Neilson, and D. L. Phillips. 1994. A statistical-to-
pographic model for mapping climatological precipitation
over mountainous terrain. Journal of Applied Meteorology
33:140–158.

Das, A. J., N. L. Stephenson, and K. P. Davis. 2016. Why do
trees die? Characterizing the drivers of background tree mor-
tality. Ecology 97:2616–2627.

Davis, K. T., S. Z. Dobrowski, P. E. Higuera, Z. A. Holden, T.
T. Veblen, M. T. Rother, S. A. Parks, A. Sala, and M. P. Man-
eta. 2019. Wildfires and climate change push low-elevation
forests across a critical climate threshold for tree regenera-
tion. Proceedings of the National Academy of Sciences USA
116:6193–6198.

Dennison, P. E., S. C. Brewer, J. D. Arnold, and M. A. Moritz.
2014. Large wildfire trends in the western United States,
1984–2011. Geophysical Research Letters 41:2928–2933.

Dobrowski, S. Z. 2011. A climatic basis for microrefugia: the
influence of terrain on climate. Global Change Biology
17:1022–1035.

Dobrowski, S. Z., A. K. Swanson, J. T. Abatzoglou, Z. A. Hol-
den, H. D. Safford, M. K. Schwartz, and D. G. Gavin. 2015.
Forest structure and species traits mediate projected recruit-
ment declines in western US tree species. Global Ecology and
Biogeography 24:917–927.

Falk, D. A. 2013. Are Madrean ecosystems approaching tipping
points? Anticipating interactions of landscape disturbance
and climate change. Merging science and management in a
rapidly changing world: Biodiversity and management of the
Madrean Archipelago III.; 2012 May 1–5; Tucson, AZ. Pages
40–47G. J. Gottfried, P. F. Ffolliott, B. S. Gebow, L. G.
Eskew, and L. C. Collins, editors. Proceedings. RMRS-P-67.
USDA Forest Service, Rocky Mountain Research Station,
Fort Collins, Colorado, USA.

Fern�andez-Guisuraga, J. M., E. Sanz-Ablanedo, S. Su�arez-
Seoane, and L. Calvo. 2018. Using unmanned aerial vehicles
in postfire vegetation survey campaigns through large and
heterogeneous areas: Opportunities and challenges. Sensors
18:586.

Flint, L. E., A. L. Flint, J. H. Thorne, and R. Boynton. 2013.
Fine-scale hydrologic modeling for regional landscape appli-
cations: the California Basin Characterization Model devel-
opment and performance. Ecological Processes 2:25.

Franco, A. M. A., J. K. Hill, C. Kitschke, Y. C. Collingham, D.
B. Roy, R. Fox, B. Huntley, and C. D. Thomas. 2006. Impacts
of climate warming and habitat loss on extinctions at species’
low-latitude range boundaries. Global Change Biology
12:1545–1553.

Frock, C. F., and M. G. Turner. 2018. Microhabitat conditions
and landscape pattern explain nocturnal rodent activity, but
not seed removal, in burned and unburned lodgepole pine
forests. Landscape Ecology 33:1895–1909.

Goforth, B. R., and R. A. Minnich. 2008. Densification, stand-
replacement wildfire, and extirpation of mixed conifer forest
in Cuyamaca Rancho State Park, southern California. Forest
Ecology and Management 256:36–45.

Gray, A. N., H. S. J. Zald, R. A. Kern, and M. North. 2005.
Stand conditions associated with tree regeneration in Sierran
mixed-conifer forests. Forest Science 51:198–210.

Greene, D. F., and E. A. Johnson. 1994. Estimating the mean
annual seed production of trees. Ecology 75:642.

Haire, S. L., and K. McGarigal. 2010. Effects of landscape pat-
terns of fire severity on regenerating ponderosa pine forests
(Pinus ponderosa) in New Mexico and Arizona, USA. Land-
scape Ecology 25:1055–1069.

Harvey, B. J., D. C. Donato, and M. G. Turner. 2016. High and
dry: Post-fire tree seedling establishment in subalpine forests
decreases with post-fire drought and large stand-replacing
burn patches. Global Ecology and Biogeography 25:655–669.

Hurteau, M. D., J. B. Bradford, P. Z. Ful�e, A. H. Taylor, and K.
L. Martin. 2014. Climate change, fire management, and eco-
logical services in the southwestern US. Forest Ecology and
Management 327:280–289.

Keeley, J. E., and T. J. Brennan. 2012. Fire-driven alien invasion
in a fire-adapted ecosystem. Oecologia 169:1043–1052.

Keeley, J. E., and H. D. Safford. 2016. Fire as an ecosystem pro-
cess. Pages 27–45 in H. Mooney, and E. Zavaleta, editors.
Ecosystems of California. University of California Press,
Berkeley, California, USA.

Kelly, D., and V. L. Sork. 2002. Mast seeding in perennial
plants: why, how, where? Annual Review of Ecology and Sys-
tematics 33:427–447.

Kemp, K. B., P. E. Higuera, and P. Morgan. 2016. Fire legacies
impact conifer regeneration across environmental gradients
in the U.S. northern Rockies. Landscape Ecology 31:619–636.

Kitzberger, T., D. A. Falk, A. L. Westerling, and T. W. Swet-
nam. 2017. Direct and indirect climate controls predict
heterogeneous early-mid 21st century wildfire burned area
across western and boreal North America. PLoS ONE 12:
e0188486.

Larson, A. J., B. R. Travis, C. C. Alina, S. A. Parks, and M. S.
Dietz. 2013. Latent resilience in ponderosa pine forest: Effects
of resumed frequent fire. Ecological Applications 23:1243–
1249.

Lauvaux, C. A., C. N. Skinner, and A. H. Taylor. 2016. High
severity fire and mixed conifer forest-chaparral dynamics in
the southern Cascade Range, USA. Forest Ecology and Man-
agement 363:74–85.

Mallek, C., H. Safford, J. H. Viers, and J. D. Miller. 2013. Mod-
ern Departures in fire severity and area vary by forest type.
Ecosphere 4:1–28.

McGill, R., J. W. Tukey, and W. A. Larsen. 1978. Variations of
box plots accessed. American Statistician 32:12–16.

McWethy, D. B. et al. 2019. Rethinking resilience to wildfire.
Nature Sustainability 2:797–804.

Michez, A., H. Pi�egay, J. Lisein, H. Claessens, and P. Lejeune.
2016. Classification of riparian forest species and health con-
dition using multi-temporal and hyperspatial imagery from
unmanned aerial system. Environmental Monitoring and
Assessment 188:1–19.

Millar, C. I., and N. L. Stephenson. 2015. Temperate forest
health in an era of emerging megadisturbance. Science
349:823–826.

Miller, J. D., E. E. Knapp, C. H. Key, C. N. Skinner, C. J. Isbell,
R. M. Creasy, and J. W. Sherlock. 2009a. Calibration and

Article e02280; page 12 JOSEPH A. E. STEWART ETAL.
Ecological Applications

Vol. 31, No. 3



validation of the relative differenced Normalized Burn Ratio
(RdNBR) to three measures of fire severity in the Sierra
Nevada and Klamath Mountains, California, USA. Remote
Sensing of Environment 113:645–656.

Miller, J. D., H. D. Safford, M. Crimmins, and A. E. Thode.
2009b. Quantitative evidence for increasing forest fire severity
in the Sierra Nevada and southern Cascade Mountains, Cali-
fornia and Nevada, USA. Ecosystems 12:16–32.

Miller, J. D., and A. E. Thode. 2007. Quantifying burn severity
in a heterogeneous landscape with a relative version of the
delta Normalized Burn Ratio (dNBR). Remote Sensing of
Environment 109:66–80.

Moyes, A. B., C. Castanha, M. J. Germino, and L. M.
Kueppers. 2013. Warming and the dependence of limber
pine (Pinus flexilis) establishment on summer soil moisture
within and above its current elevation range. Oecologia
171:271–282.

Nagel, T. A., and A. H. Taylor. 2005. Fire and persistence of
montane chaparral in mixed conifer forest landscapes in the
northern Sierra Nevada, Lake Tahoe Basin, California, USA.
Journal of the Torrey Botanical Society 132:442–457.

O’Connor, C. D., D. A. Falk, A. M. Lynch, and T. W. Swetnam.
2014. Fire severity, size, and climate associations diverge from
historical precedent along an ecological gradient in the
Pinale~no Mountains, Arizona, USA. Forest Ecology and
Management 329:264–278.

Ohmann, J. L., M. J. Gregory, E. B. Henderson, and H. M.
Roberts. 2011. Mapping gradients of community composition
with nearest-neighbor imputation: extending plot data for
landscape analysis. Journal of Vegetation Science 22:660–676.

Oliver, W. W., and K. L. Dolph. 1992. Mixed-conifer seedling
growth varies in response to overstory release. Forest Ecology
and Management 48:179–183.

Pausas, J. G., and J. E. Keeley. 2017. Epicormic Resprouting in
fire-prone ecosystems. Trends in Plant Science 22:1008–1015.

Peters, V. S., E. Macdonald, and M. R. T. Dale. 2005. The inter-
action between masting and fire is key to white spruce regen-
eration. Ecology 86:1744–1750.

Puhlick, J. J., D. C. Laughlin, and M. M. Moore. 2012. Factors
influencing ponderosa pine regeneration in the southwestern
USA. Forest Ecology and Management 264:10–19.

Pya, N., and S. N. Wood. 2015. Shape constrained additive
models. Statistics and Computing 25:543–559.

RCore Team. 2018. R: A language and environment for statisti-
cal computing. R Foundation for Statistical Computing,
Vienna, Austria. https://www.R-project.org/

Rodman, K. C., T. T. Veblen, T. B. Chapman, M. T. Rother, A.
P. Wion, and M. D. Redmond. 2019. Limitations to recovery
following wildfire in dry forests of southern Colorado and
northern New Mexico, USA. Ecological Applications 30:1–
20.

Rother, M. T., and T. T. Veblen. 2016. Limited conifer regenera-
tion following wildfires in dry ponderosa pine forests of the
Colorado Front Range. Ecosphere 7:e01594.

Safford, H. D., and J. T. Stevens. 2017. Natural range of
variation for yellow pine and mixed-conifer forests in the
Sierra Nevada, southern Cascades, and Modoc and Inyo
National Forests, California, USA, Gen. Tech. Rep. PSW-
GTR-256. Page 229. U.S. Department of Agriculture, Forest
Service, Pacific Southwest Research Station, Albany,
California, USA.

Savage, M., J. N. Mast, and J. J. Feddema. 2013. Double
whammy: high-severity fire and drought in ponderosa pine
forests of the Southwest. Canadian Journal of Forest
Research 43:570–583.

Seidl, R., T. A. Spies, D. L. Peterson, S. L. Stephens, and J. A.
Hicke. 2016. Searching for resilience: addressing the impacts

of changing disturbance regimes on forest ecosystem services.
Journal of Applied Ecology 53:120–129.

Shive, K. L., H. K. Preisler, K. R. Welch, H. D. Safford, R. J.
Butz, K. L. O’Hara, and S. L. Stephens. 2018. From the
stand-scale to the landscape-scale: predicting the spatial pat-
terns of forest regeneration after disturbance. Ecological
Applications 28:1626–1639.

Stevens, J. T., B. M. Collins, J. D. Miller, M. P. North, and S. L.
Stephens. 2017. Changing spatial patterns of stand-replacing
fire in California conifer forests. Forest Ecology and Manage-
ment 406:28–36.

Stevens-Rumann, C. S., K. B. Kemp, P. E. Higuera, B. J. Har-
vey, M. T. Rother, D. C. Donato, P. Morgan, and T. T.
Veblen. 2018. Evidence for declining forest resilience to wild-
fires under climate change. Ecology Letters 21:243–252.

Stewart, J. A. E. et al. 2020, Post-fire conifer regeneration
observations for National Forest land in California (2009–
2017): U.S. Geological Survey data release. https://doi.org/10.
5066/P9CWOGXV

Tepley, A. J., J. R. Thompson, H. E. Epstein, and K. J. Ander-
son-Teixeira. 2017. Vulnerability to forest loss through
altered postfire recovery dynamics in a warming climate in
the Klamath Mountains. Global Change Biology 23:4117–
4132.

Thorne, J. H., R. M. Boynton, L. E. Flint, and A. L. Flint.
2015. The magnitude and spatial patterns of historical and
future hydrologic change in California’s watersheds. Eco-
sphere 6:1–30.

Thorne, J. H., H. Choe, P. A. Stine, J. C. Chambers, A. Holguin,
A. C. Kerr, and M. W. Schwartz. 2018. Climate change vul-
nerability assessment of forests in the Southwest USA. Cli-
matic Change 148:387–402.

U.S. Geological Survey. 2018. U.S. Geological Survey, The
National Map. http://nationalmap.gov/3dep_prodserv.html

USDA Forest Service. 2016. FACTS—regional activities in the
past 20 years. https://www.fs.usda.gov/main/r5/landmanage
ment/gis

USDA Forest Service. 2018. Rapid assessment of vegetation con-
dition after wildfire. https://www.fs.fed.us/postfirevegcondition

Urza, A. K., and J. S. Sibold. 2017. Climate and seed availabil-
ity initiate alternate post-fire trajectories in a lower subalpine
forest. Journal of Vegetation Science 28:43–56.

Vander Wall, S. B. 2002. Masting in animal-dispersed pines
facilitates seed dispersal. Ecology 83:3508–3516.

Voldoire, A. et al. 2013. The CNRM-CM5.1 global climate
model: description and basic evaluation. Climate Dynamics
40:2091–2121.

Wang, T., G. A. O’Neill, and S. N. Aitken. 2010. Integrating
environmental and genetic effects to predict responses of tree
populations to climate. Ecological Applications 20:153–163.

Watanabe, S. et al. 2011. MIROC-ESM 2010: model description
and basic results of CMIP5-20c3m experiments. Geoscientific
Model Development 4:845–872.

Welch, K. R., H. D. Safford, and T. P. Young. 2016. Predicting
conifer establishment post wildfire in mixed conifer forests of
the North American Mediterranean-climate zone. Ecosphere
7:e01609.

Williams, A. P. et al. 2013. Temperature as a potent driver of
regional forest drought stress and tree mortality. Nature Cli-
mate Change 3:292–297.

Wood, S. N. 2017. Generalized additive models: an introduction
with R. Second edition. CRC Press, Boca Raton, Florida,
USA.

Wright, B. R., A. F. Zuur, and G. C. K. Chan. 2014. Proximate
causes and possible adaptive functions of mast seeding and
barren flower shows in spinifex grasses (Triodia spp.) in arid
regions of Australia. Rangeland Journal 36:297–308.

April 2021 DRIVERS OF POSTFIRE FOREST REGENERATION Article e02280; page 13

https://www.R-project.org/
https://doi.org/10.5066/P9CWOGXV
https://doi.org/10.5066/P9CWOGXV
http://nationalmap.gov/3dep_prodserv.html
https://www.fs.usda.gov/main/r5/landmanagement/gis
https://www.fs.usda.gov/main/r5/landmanagement/gis
https://www.fs.fed.us/postfirevegcondition


Young, D. J. N., C. M. Werner, K. R. Welch, T. P. Young, H. D.
Safford, and A. M. Latimer. 2019. Post-fire forest regenera-
tion shows limited climate tracking and potential for
drought-induced type conversion. Ecology 100:e02571.

Young, T. P., E. P. Zefferman, K. J. Vaughn, and S. Fick.
2015. Initial success of native grasses is contingent on

multiple interactions among exotic grass competition, tem-
poral priority, rainfall and site effects. AoB PLANTS
7:1–9.

Zwolak, R., D. E. Pearson, Y. K. Ortega, and E. E. Crone.
2010. Fire and mice: Seed predation moderates fire’s influ-
ence on conifer recruitment. Ecology 91:1124–1131.

SUPPORTING INFORMATION

Additional supporting information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/eap.2280/full

DATA AVAILABILITY

Data are available from the USGS ScienceBase repository (Stewart et al. 2020): https://doi.org/10.5066/P9CWOGXV

Article e02280; page 14 JOSEPH A. E. STEWART ETAL.
Ecological Applications

Vol. 31, No. 3

http://onlinelibrary.wiley.com/doi/10.1002/eap.2280/full
https://doi.org/10.5066/P9CWOGXV

