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BACKDROP

Climate impacts California wildfire risk
Thermodynamic: through temperature, moisture deficits, drought
Subsequent tree mortality: buildup of heavy ground fuels cou
Changes to atmospheric circulation ‘;‘ i &
Future projections predict wind events decrease, increase, or per5| Ll
Seasonality, evolving vegetation

Extreme wind events are a critical factor driv
Reconstruction of historical extrema disagree
Expansion of fire risk intelligence: weather station network, state

Wildfire Mitigation Plans, PSPSs -
Still, detection & forecasting of wind extrema and fire growth are eIuswe

.

Most destructive fires occur in the wildland urban interface an
structures and wildland fuels comingle ‘
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We characterize
conditions
leading to
historic CA
extreme fire
weather/growth
with a 2-track

approach:

e Extreme Weather

Typing ldentify

archetypal regional
weather patterns
associated with past
days of large fire
growth over the
satellite fire
detection era in
distinct regions
across CA

* Historical trend analysis

* |dentification in climate
projections

* Fine-scale

deconstruction of
key events Refine
understanding of the
airflow regime and
fire behavior in these
types with
convective-scale
simulations of
key/typical wildfire
events using a
coupled weather-fire
mode|

 |dentify conditions for
extreme winds &
“hotspots”
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Characterizing Historical Fires: Northern' \
Extreme weather typing California . \

* Hypothesis: limited set of
that favor large daily fire growth

Nevada

* Method: %‘6

* Specify 8 homogeneous, distinct Fire Weather 0
Regions that feature similar fire environment
conditions

* Compare ECMWEF 5t generation global reanalyses
(ERA5) daily average fields with Global Wildfire
Information System (GWIS) dataset (Art’es et al.,
2019) Jan 2001 - Nov 2019, NASA FIRMS for 2020 .

e Adapt ML cluster analysis (Prein & Mearns, JGR-A, Sundowr;er
2021) to identify 2-4 XWTs associated with the days winds DA region:’
with largest daily burned area in each region ~ 4 ' "

"'\‘Central
Coast

Desert SE

A Prein, J Coen, A Jaye (2021) The character and changing frequency »
. . . . 7
of extreme California fire weather. J. Geophys Res. Atmos. (Submitted) s



Extreme Weather Typing (XWT) Analysis

* Use the GWIS daily burned area product to
accumulate daily burned area in each
region (NASA FIRMS for 2020)

e Select the top N (4, 6, 10, or 16) days that
are at least a week apart

* Select atmospheric variables that could
characterize the large-scale flow conditions
and their impact on fire behavior.

e Tested 33 variables encompassing dynamical

forcing (wind at various heights, pressure), — ned Area [kin’] -
thermodynamic forcing (T and moisture at
various heights), and convective forcing indices . 2003-10-26 A

for ability to predict extreme daily burned o Old Fire

areas
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o

* Test all possible combinations of up to 3 of the

2013-07-17

33 variables to ID variables whose spatial ‘ Mountain Fir
gradients have the most predictive skill '
U1
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Summary of XWT results:

 The most extreme fire growth days are associated
with archetypal weather patterns (XWTs)

Some XWTs are familiar (such as Santa Ana/Diablo
wind events), others less so

Clear seasonal cycle with summer and autumn
maxima

Extreme fire days dominate burned area statistics,
with top 1% of days accounting for between 35%
in the Northern region — 77% in San Diego region.

The rapid increase and decay in daily burned area
indicates that extreme fire days are closely related
to short-term weather conditions more so than
slowly changing factors, as found elsewhere
(Abatzoglou & Kolden 2011; Riley et al. 2013)
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XWTs allow us to characterize fires by types & flag days with potential for exceptional fire growth

Ex.: LA region Wind-driven fires that occur under
a LA-A, 6 days - Santa Ana Winds — 10% b LA-L, 4 days - Onshore Wind ¢ LA-A Example strong, dry off_Shore winds
TS 3 — ' Old Fire
I = O D NN NI - s E S Oct. 26, 2003

Burned Area: 369 km2
Strong Santa Ana winds
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Mountain Fire

Jul. 17, 2013

Burned Area: 111 km2
Plume driven/local winds

normalized centroids []

US Forest Service
Plume-driven fires that occur low pressure
anomalies (thermal low p systems)
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* Pattern associated with the X\WT.  * Monthly occurrence frequency (seasonality)
* Duration * 3 variables found to best characterize XWTs



Sierra-West Region

X SW L 11 days 22 > km"

Sierra West

SW-D: strong NW SW-TW: SW winds SW-L: NE winds
winds on west side of within a high within a thermal low-
a trough with surface pressure system pressure system

downslope
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If we consider the Top20 Days:
Top 6 Burned area days '2016-06-25', '2015-09-13',
'2002-07-22', '2001-09-07',
'2012-08-12', '2017-10-09',

S I e r ra We St '2017-07-19', '2008-0/-10",
wind Events ST 2011-09-11', '2015-06-21",

'2001-08-21', '2013-05-02/,
'2017-07-09', '2007-06-24',
'2014-08-19', '2004-10-14',
'2013-08-24', '2008-06-13',
'2016-08-20', '2008-06-23'




Sierra-East Region
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Figure 4. Annual cycle of current climate (1975-2015) XWTs in the NCD20C (gray bars),
LENS (blue bars), and future climate (2060-2100) LENS simulations (red line). Results for

different fire regions are chosn in rows and XWTs are shown in columns. Month that have signifi-
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Future:

cantly different XWT frequencies in the current climate LENS simulations compared to NCD20C

are highlighted with a blue asterix. Months with significant changes in future climate XW'T fre-
quencies are highlighted with a red astrix. Significance is assessed by a two-sided Mann-Whitney

U test (P=0.05).

upslope events deeper into fall

Sierras West

Eastern Sierras: increase in frequency in spring-
summer wind events
Western Sierras: Contraction in the Diablo season
and decrease in frequency. Shift in month of the



Multiscale analysis of historical fires: Joining the scales

a XWT1,6 days - Santa Ana Winds — 10%

Topography
shape and
features,
atmospheric ‘
stability,
airflow
dynamics

(b) 2020 May-Sep. VPD

Highest

Top Decile
Upper Tercile
Middle Tercile
Botttom Tercile
Bottom Decile

130°wW 110°W

Lowest

Inclined
canyons,
heavy
mortality, a
gentle nudge
of wind
upslope...

Courtesy of L. Tarnay

Ex.: Creek Fire

e vmbin To lem—11

Underlying conditions +  regional weather pattern + local factors = Il

Approach: Catalog susceptibility to types of events across CA & place in knowledge framework for practical use GENCE



Mechanisms for extreme fire growth:
Rapid fire growth occurs at either end of a spectrum

Wildland fire events are often classified as either wind-driven or plume-driven, depending on which appears to
be driving fire growth. Both types are ultimately driven by strong winds, but....

Plume-Dominated Fire Wind-Driven Fire

Ambient winds are strong. Events often associated

Ambient winds are usually weak. Strong winds are
with exceptional ambient winds.

internally generated by fire’s heat release (“fire-
induced winds”)

Currently: Events appear mysterious because extrema at both ends are the weakest links of current tools
Whether plume-driven fire-induced winds or complex airflows in mountainous terrain, no simple tool succeeds.



Wind-driven wildfire events - Background (1)

|dealized examples
* Airflow over complex terrain: flow regimes

 Some of important parameters: atmospheric static stability (lapse rate),
wind speed, terrain aspect ratio (slope). Flow can do many different things.

Upwind Forcing
of Stable Air

 Whiteman - Mountain Meteorology describes many flow regimes

Mountain Meteorology

FUNDAMENTALS AND APPLICATIONS

€. David Whiteman A

— A W

Fig. 1a. Neutrally stratified air is easily
carried over a mountain barrier and
may produce eddies on the lee side.
(From Whiteman, 2000)

Isentropes — lines of
constant “potential
temperature”
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Fig. 1b. Depending on air speed and
stability, steepness may cause airflow
to separate from the ground on the lee
side of terrain. (From Whiteman, 2000)

Fig 2. a) Schematic of generation of gravity waves, b) Vertically propagating
mountain wave, and c) trapped lee wave. All figures from Whiteman(2000).



Wind-driven wildfire events: Background (2)
Looking for real analogues in other locations

* In investigations of 2000s
Diablo/Santa Ana fire events,
analogies made with studies of
windstorms. Ex.: CO Front Range
of Rocky Mountains

* Hypotheses: atmospheric gravity
wave steepening and/or
breaking, wave reflections from
critical levels....

* Do these apply to CA events?

1972 Boulder downslope windstorm (Peltier and Clark, 1979)

AUGUST 1979

1522

W. R. PELTIER AND T. L. CLARK

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoOLUME 36
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Flow regime factors influencing microscale winds in offshore
wind-driven events

Very stable layer (~1-1.5 km
deep) of air near the surface

72489 REV Reno
100

High speed winds that back (rotate
counterclockwise) with height from
Surface to mid- atmosphere

Topography
features
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This combination — very stable surface layer traveling at high speed over a range of
terrain features creates unique flow effects (but doesn’t support waves).



Wind-driven wildfire events 2017 Mapa Firestorr

4D weather simulated using CAWFE model

Shown: near-surface wind

Oct. 8 11 am —Oct. 9 2017 ~4 PM PDT

Events vary in strength
(based on pressure
gradient)

Location of strongest
winds passes from
north to south

Date/Time: 2017-10-09 15:54:00

Great deal of variability
across CA

111111

Little examination of
details in Santa Ana or
Diablo airflow

CA events are unique,
few resemble existing
scientific literature

Important science gaps.

The Diablo wind event created local regions with greater
accelerations, stagnation regions, and pulses/surges



Method

e Apply CAWFE coupled
weather — fire model
optimized for fine-scale
simulations in complex
terrain to historical fire
events

e Value: Captures additional
factors that influence fire

behavior
o fire-induced winds

o fine-scale accelerations
underlying exceptional
wind maxima

o transient weather factors
like pyrocu and gust fronts

o fire phenomena

CAWFE® Modeling System

Weather . Fuels Fire
InputData  Gridded (5-25 km) T_erra'ln Spatial map of Ignition location
atmospheric elevation fuel models and time
analyses or 30-1/3arc Dead and live fuel or spatial fire
forecast sec fuel moisture ) map
Coupled Numerical Weather Prediction —
Wildland Fire Model
. . Simulation of weather at 100s of m + fire behavior
Simulation
engine Convective-scale | wind components, Fire behavior
weather model relative humidity model
simulates the 2 calculates surface fire
atmospheric state spread rate, fuel
over complex terrain consumption rate,
in nested domains Sensible and latent crown fire initiation,
that refine from 10 — Eak Hukes smoke crown fire spread rate,
0.1 km grid spacing smoke production /
Evolving fine- Evolving fire
scale airflow : perimeter
4 4
Products
Fire-induced Smoke
winds and fire production,
phenomena p, plume, and
transport that
Fire energy varies with fire
release rate

behavior /

FE

Coupled Atmosphere-Wildland Fire Environment

™



The CAWFE® model couples Numerical Weather Prediction

with a wildland fire behavior module

a. The Clark-Hall Numerical Weather Prediction Model

Solves prognostic fluid dynamics equations of motion for air momentum, pressure, a
thermodynamic variable, water vapor, and hydrometeors on a finite difference grid.

* 3-dim., time dependent

* Nonhydrostatic,|anelastic

Solution
method

* Terrain-following coordinates,

vertically stretched grid

* \Vertical + horizontal grid refinement

* 2-way interacting nested domains

* OpenMP? and MPI® parallelization

Designed for high-resolution (~ 100s m) simulations in steep, complex terrain.

Large-scale initialization of
atmospheric environment using
gridded analyses or forecast

Models formation of clouds, rain, ice

and hail in “pyrocumulus” clouds

over fires

Physics

Tracks smoke transport Y
packages

Aspect-dependent solar heating

a Clark, Hall, Coen 1996: Source Code Doc. for the Clark-Hall Cloud-scale Model. NCAR Tech Note.
bClark et al. 2003: Numerical simulations of grassland fires. J. Geophys. Res.

NCAR/TN-228+8TR
HNCAR TECHNICAL MCTE

May 1953

Source Code Documentation for the
Clark-Hall Cloud-scale Model
Code Version G3CHO1

Tarry L. Clark
Wilkam . Halt
Janice L. Goen

' MESQSCALE AND MICROSCALE METEQROLOGY DIVISION

MATIONAL CENTER FOR ATMOSFHERIC RESEARCH
BOULDER, COLORADD




1. Represent & track

the (subgrid-scale)
interface between
burning and
nonburning regions

(the ‘flaming front” )

3. Post-frontal
heat & water
vapor release.
Once ignited, the
fuel remaining
decays
exponentially,
acc. to lab
experiments
(BURNUP).

b. A Fire Behavior Module

Overview of Components

2. Rate of spread
(ROS) of flaming
front calculated
as function of
fire-affected wind,
fuel, and slope
using semi-
empirical
equations (i.e.
Rothermel
(1972))

4. Heat, water
vapor, and smoke
fluxes released by
surface fire into
lowest layers of
atmospheric model



6. Calculate the rate of 5. Surface fire heats and

- i i deli ildland Fires:
spread of the crown fire b. A Fire Behavior Module dries canopy. Does the X Dascptiomiofthe
using empirical surface fire heat flux e et
relationships to surface exceed the (empirical) Environment Model

‘ . (CAWFE)
fire ROS Overview of Com ponents threshold to transition into
the tree canopy (if February, 2013
present)?
Janice L. Coen
1. Represent & track . 2.Rate of spread  LETIEmISEL
the (subgrid-scale) . Crown fire )
. Surface fire (ROS) of flaming
interface between _ _ = -

front calculated

as function of
fire-affected wind,
fuel, and slope

burning and
nonburning regions
(the ‘flaming front” )

using semi- NCAR/TN-500 +STR
empirical
equations (i.e.

3. Post-frontal Rothermel

heat & water (1972))

vapor release.
Once ignited, the
fuel remaining

4. Heat, water
vapor, and smoke
el o L L fluxes released by
decays ' M AR “»}&« g‘ w:' surface fire into
exponentially, ARG b "C‘c)l;/rtesy %l lowest layers of
atmospheric model

acc. to lab
experiments.

7. Heat, water vapor, and smoke fluxes released
by crown fire into atmospheric model



Atmosphere-fire “Coupling” allows the effects of environmental factors to amplify and
reinforce each other through the atmospheric medium

Semi-empirical Spread Rate of a Flaming Front

Rothermel (1972)

R=Ro(1+ ¢, + o)

1

No-wind spread rate wind slope

on flat ground factor  factor
(Fuel properties only)

Solid mass transport —_ d

_/—’ Internal radiation
—

& convection

Wind: has the strongest effect on fire but is
“invisible” and the most variable in time
and (perhaps) space

i
| 4 //’,4 -

Indra i/j

Some mass fire effects —and the effects of
heavy fuels - are captured through internal
dynamics -> “Blow-ups” “Fire storms”



CAWFE model configuration for real event
L.qndfire.’g;_o—::' )

INPUT DATA: (1) Gridded synoptic/global weather '}* !':_, ila, %
analyses (past) or forecast (future) R T WO ey

[ ]FBFMIL
[]JrBFM2
[]rerM3
[ ]¥BFM4
[]FBFMS
[C]FBFMs
[ FBFM7
[ ]FBFMS
[ FBFMY
[l FeFM10
[]FBFPMI1L
[ FeFMI12
[l FeFM13
. Urban

|:| Snow/Tce

.

INPUT DATA: (2) Terrain elevation data

INPUT DATA: (3) Fuel map (surface + canopy fuels)— ¥ i
spatial variability and fuel moisture

INPUT DATA: (4) Fire ignition: Time and location

5 simultaneous nested weather modeling domains with
horizontal grid spacing 10 km, 3.33 km, 1.11 km, 370 m,
and 123 m telescope from a national forecast...

. Water

Grid
refinement

Ll: View Legends

123}]158104  SQNIYS  SISSEID

D Agriculture

|2PON |2Nn4 22e4uns (|ealio8a3e))
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Wind-driven wildfire events

Classify problematic areas by:
* Terrain aspect ratio |

 Sierras vs gentler Transverse ranges and west
coastal ranges

e Over vs. through:
* Flow over the top of continuous ranges
* Flow over but there are notches/saddles
* Broad dips

* Narrow breaks aligned along airflow (e.g. narrow
river valleys, narrower than NWP forecast)

* Flow between: Not over, but through broad
valleys & passes

Intersecting airflows
Local anomalies
Transience — magnitude & period of pulses

Contribution of built structures on event
dynamics

4
~

Northern
California

v\\

X
X
]

\(;entral
Coast

.. hA region

T
B
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SE Desert



Woolsey Fire
November 8, 2018

5 nested modeling
domains telescope
from regional to
microscale
resolution

Grid size:
D1: 10.0 km
D2: 3.3 km
D3: 1.1 km
D4: 370 m
D5: 185 m

D1 starts at
11/08/18 10 a.m.
local time
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Woolsey Fire

Santa Ana

Narrow river of strong
winds

Relatively simple
Bernoulli-like (airfoil)
acceleration in flow over
shallow features but...  §
+/- 4 m/s pulses in winds
from upwind mountain
range, 2 min interval




Woolsey - evaluation

Date/Time: 018-11-09 13:41:00

Moorpark = Il Simi Valley IR ST U T A s i ' SRR

~.

.

\ SIMI VALLE, \ o AN OC 5 S22 7 i i e A e 30

— 24.645

— 19.291
o

13.936

8.5816

N ¢ B e R ‘ ‘ SRS - " ol ind speed (m/s)

SANTA MONICA MOUN TAIN

Maliba
Creek

Santa Monea St Palk

Mountains
N stio nal
et ation A s

Cortal
St fyy 3 )/ Canyon Mahbu' —Bacin-

ot YNy
4 FPark

=08

20181109_094200.



October 8-9, 2017 North Bay Wildfires

REDWQ@BIVALIL!E.!Y

High
Pressure

Luceme:

Clearlake:

On Oct. 8-9, > 170 wildfires ignited in the Wine Country, northern coastal ranges, and Butte and
Nevada Counties to the west, north, and east of CA’s northern Sacramento Valley and spread
rapidly during local peaks of an unusually strong Diablo wind event
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Local mesonet provided an unclear message about what was happening
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Regional simulations with a mesoscale model tell
some of what happened

WRF simulations of Oct. 8, 2017

* Operational models produce strong winds over ridges
* HRRR: 25-28 m/s near Santa Rosa

 Mesoscale model (WRF) research simulations
* C.Bowers, R. Fovell WRF sims: peak ~ 31 m/s

C. Bowers (WRF sim.)

Cross Section of Wind Speed and Theta-e
2017-10-09 08:00:00

R. Fovell via C. Mass

. Winds (shaded/5 MPH contours) and theta (6K contours) at Tubbs fire onset time 04Z090CT2017

40.00
I35.56
31.11

26.67
22.22

17.78

height MSL (km)

Height (m)

Wind Speed (m/s)

13.33

8.89

4.44

0.00

35 40 45 50 55 60 65
wind speed (mph)

Latitude, Longitude The predicted winds at the Tubbs site was scary strong, with max winds around 70 mph.



Wind Damage suggests extreme winds in area
(photos courtesy of M. Mehle, NWS)

Hawkeye RAWS




WRF simulated energy spectrum
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Skamarock, W.C. Evaluating mesoscale NWP
models using kinetic energy spectra. Mon.
Weather Rev. 2004, 132, 3019-3032.

Fire wx forecasters using mesoscale
forecasts report success at
capturing regional wind events’
timing and strength.

All finite-difference models stray
from natural energy spectra at small
scales*, however....

Dynamic core factors like divergence
dampener (a result of WRF
compressible formulation) and
other design choices damp small
motions and smooth sharp
gradients
* Under-represent small, strong
wind phenomena/extrema
 WRF-based coupled weather-fire
simulations lack features in fire
shape and underrepresent fire
phenomena

*LES mode — TKE, periodic
boundary conditions etc. trickery



i | 5 | ‘ CAWEFE simulation of the Tubbs Fire
g A Oct. 8 9 PM —0Oct. 9 6:45 AM

He aldshurg.
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Date/Time: 2017-10-09 03:09:00
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Visible and Infrared Imaging Radiometer Suite (VIIRS) active fire
detections at 3:09 A.M. Oct 9. 2017

Coen, Schroeder, and Quayle (2018) Atmosphere.



Simulated wind peaks exceed 40 m s (~*90 mph) on secondary ridges

Vertical cross section along flow over Tubbs fire
Contours: speed in plane

Shallow (< 1500 m) high speed flow of stable air
* Surges from upstream move through

* But,Fr>>1
* kinetic forcese== >> buoyancyI
forces i.e. too fast for stability
effects (like waves).

* Meteorological lore: Behaves like
neutrally-stratified flow, with
acceleration over ridges

* Our results: Mostly, but eddies
of extremely fast air shed &
flow downstream

* Eddies get additional acceleration
over secondary ridges, boosting peak
winds over 40 m s .

* Ex: Tubbs ignition area

Coen, Schroeder, and Quayle (2018) Atmosphere.



Redwood Valley Fire

10:40 PM 10/8
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Further north, the pressure
gradient drover air over a
lower barrier in the Sierras,
creating a shallow, narrow
river of high speed air that
reportedly ignited the
Redwood Valley Fire.
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Camp Flre - Paradlse; CA 6:15 a.m.—2:0((:)'?3\\I\//IVI\FIEV.58ir2r(])LiE|3at1i?r2me:1minute

_ o , dx=dy=370 m
Satellite Active Fire Detections

. VIIRS I-band 11:42 a.m. Nov. 8, 2018.
. VIIRS I-bandk 1:09 a.m. Nov. 9, 2018
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Shear instability created pulses of strong winds near the
surface over the Camp Fire

Vertical cross section of potential temperature along flow Vertical cross section of speed in plane
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WRF-based simulations of Camp Fire weather and fire growth

(a) Weather (Brewer and Clements 2019)
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VIIRS fire detection data

B VIIRS I-band 11:42 a.m. Nov. 8, 2018
I VIRS I-band 1:09 a.m. Nov. 9, 2018

The Camp Fire reached Paradise
in about 4 h (~10:45 am). WRF-
based coupled models would
have predicted that the Camp
fire would not have reached
Paradise even by the end of the
first day (17.5 h).

Or the second - a
catastrophic prediction.

Fire growth predictions with WRF-
based coupled weather-fire models
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The numerical algorithms in WRF community atmospheric model vigorously
suppress small scale motions and smooth gradients

Wavelength (km)
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Skamarock, W.C. Evaluating mesoscale NWP models using kinetic energy fOf'ECCISt tool.
spectra. Mon. Weather Rev. 2004, 132, 3019-3032.



As high pressure inland pushed air over the Sierras toward the coast, a relatively low barrier
upwind of Paradise/Oroville allowed a cross-barrier flow stronger than elsewhere in the range
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D2: 3.3 km grid spacing D3: 1.1 km grid spacing D4: 0.37 km grid spacing

A “wind extrema map” - A worthy goal?
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North Complex - evaluation
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Labor Day wind event
Refining from regional-scale modeling to the microscale brings

out locations experiencing strong winds.
Moderate strength events produce strongest winds more within

the canyons.
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Plume-driven fires

King Fire. Image courtesy of Jeff Zimmerman




2014

Date/Time: 2014-09-16 21:45:00

King Fire VIIRS IR fire maps
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The 2014 King Megafire (Sierra Nevada Mtns)

Though widely attributed to drought and fuel
accumulation, the King Fire owed its unanticipated rapid
growth to (1) microscale circulations within the Rubicon
Canyon and (2) fire-induced winds.

CAWEFE simulation
9/16/14 9:45 pm —9/18/14 10:45 am (37 hr)

Coen,. Stavros, and Fites-Kaufman, 2018: Deconstructing the King megafire. Ecol. Applic.
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Photos courtesy of Jeff Zimmerman

Other phenomena:

Multiple plumes

= 2o 18

Figure $2. Simulated fire heat flux (in W m”, according to color bar at right) from the

Control experiment at 2:31 A.M. 17 September showing the King fire's multiple plumes.
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To what extent did dry conditions (through surface fuel dead fuel
moisture content) affect fire growth or extent?

At t=12h 24 h 36 h

Dead fuel moisture content

8% (historical high)

5% (observed, historical
average)

—— 3% (historical low)

Fuel moisture effect in very dry
conditions as fire climbs inclined terrain




To what extent did surface fuel accumulation contribute to rapid
growth or extent?

at t=1_2h 36 h

Fuel load

Standard properties assoc. with
each fuel model

—— Y% the fuel load in half the depth

Fuel amount has weak effect on how
fast fire spreads on flat ground.
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Rim Fire

L. Tarnay et al. (2020) Smoke symposium. “Modeled effects of fuel reductic

What if we had been able to treat Rim area with fire beforehand?

* Previous treatments
aided the suppression
of the Rim fire

* And help limit
September smoke
impacts

* Can we model those
fuels and see a
difference in fire spread

* Would it have made a
difference to have
brought fire down
farther out of Yosemite?

Figure adapted from Long et al., 2017
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|dentifying areas at risk for rapid large fire growth vuba

Simulated 12-h of growth from hypothetical ignitions along the Yuba River Valley River

On 9/17/14 (the day of the King fire run), weather was typical for fall — weak southwesterlies.

Yuba River
Valley

wind direction

3 of 4 hypothetical ignitions along the Yuba River generated small fires.

Valley

/
sssssssssss

#3 had the same weather and fuel conditions, but the
ignition near Goodyears Bar grew rapidly - 12,140 ha (30k
acres) in a 12 h burning period - due to fine-scale
atmospheric circulations and fire-atmosphere feedbacks.



“Plume-driven” fire takeaways:

* “Extreme” fires can occur during conditions (weather) that are not
extreme.

* Primary factors shaping a fire and driving the rapid growth
(microscale circulations and fire-induced winds) may not be apparent.

* Fuel moisture and load may only have noticeable impact where fires
are growing upslope, where they can reinforce each other.

* Small factors and luck (ignition location) can make or break large fire
growth among several ignitions in similar conditions
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What controls the growth
of plume-driven fires?

* Varying fuel & moisture content had small
effect on ROS, effect was limited to inclined
terrain, where their effect was combined.
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summary

Risk: regional weather patterns, local wind
flows, seasonality of weather patterns
overlapping susceptibility
* “Camp Fire” scenarios can’t happen everywhere
e Weather station network and mesoscale forecast
models (and associated products) are much

coarser than topography here, and still do not
indicate the strength of wind maxima

Filling a scientific gap.

* Because of unique flow factors, certain topographic
configurations in wind events can produce local rivers
of strong, gusty winds

* Problem areas vary with strength of event

Cataloging mechanisms/locations with
potential for factors to combine creating an
extreme growth day

Multiscale aspects to risk

* Not every fire has potential to become
megafire

Fire weather index, hot dry windy, etc. attempt
to get at danger. XWT typing, trends in their
frequency, and mechanisms for generating
rapid fire growth are another approach to
identifying a high risk day/location



Thank you.

This material is based upon work supported by California Energy
Commission, Comprehensive Open Source Development of Next Generation
Wildfire Models for Grid Resiliency, EPC-18-026, NIST under award
70NANB19HO054, and NASA under Award 80NSSC20K0206

NCAR is sponsored by the National Science Foundation.

For more information:
janicec@ucar.edu



