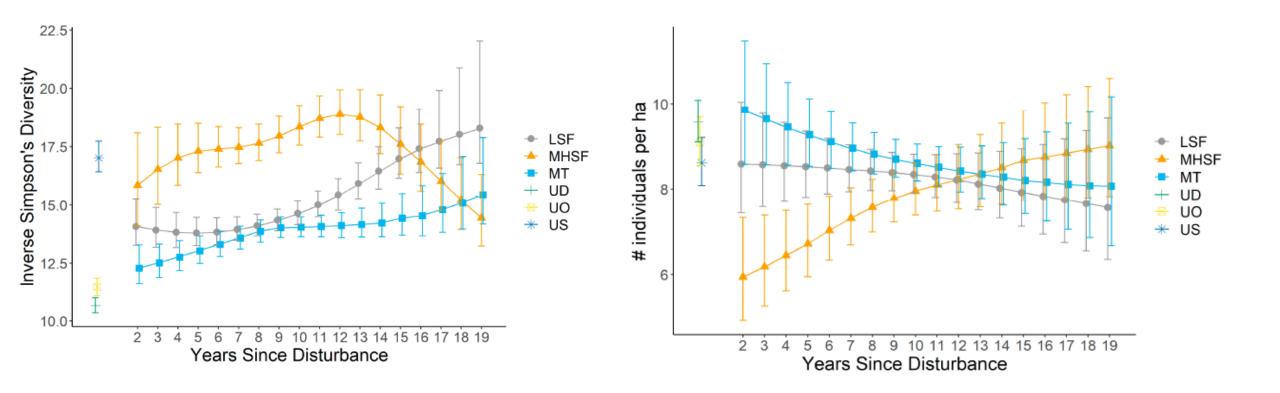
Monitoring the Effects of Power Fire Herbicide Treatments on Complex Early Seral Forest Birds

Alissa Fogg & Jay Roberts Presentation to the ACCG Monitoring Work Group

November 10, 2021


Conservation science for a healthy planet.

Power Fire Shrubs and Regenerating Conifers Photo by Zack Steel

Value of Older Burned Areas for Birds

Point Blue

Roberts et al. 2021 Forests

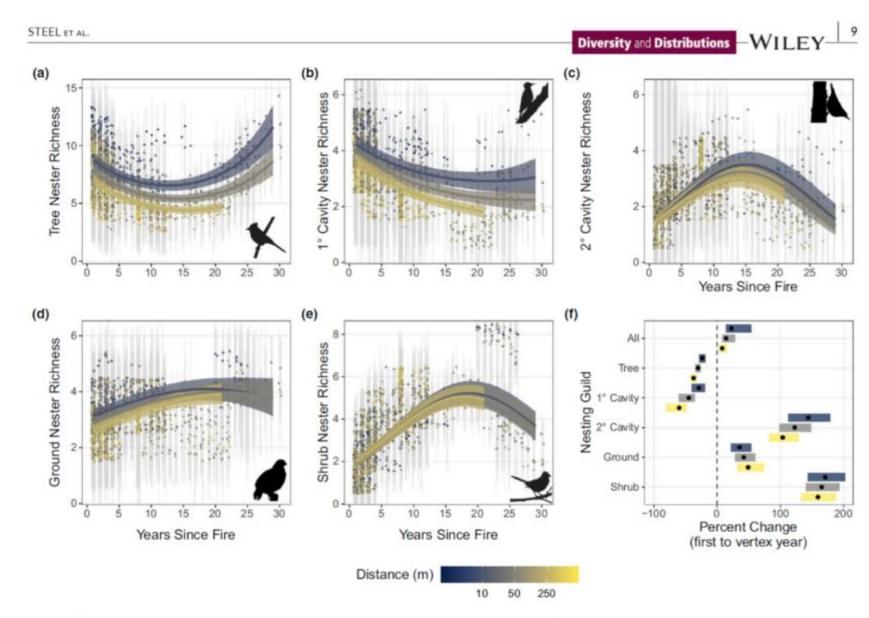
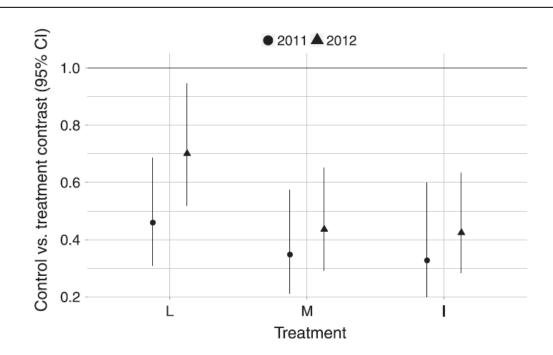


FIGURE 5 Marginal effects of years since fire and internal distance from high-severity patch edge on avian guild richness in the Sierra



Post-fire Management

- Salvage Logging
- Chipping small material
- Reduce shrub & herbaceous competition
- *Replanted with conifers*
- Shrubs continue to be controlled especially on private land

Herbicide Effects on Birds

- Most research is from intensively managed conifer plantations where early seral forest birds are declining
- Foliage gleaners and shrub nesters declined, and open habitat birds benefited
- Effects can be short-term if vegetation resprouts
- Post-fire herbicide effects has been little studied

Fig. 4. Back-transformed model estimates (95% confidence interval) for three intensive forest management treatments in relation to untreated controls for species expected to be associated with early seral hardwood forest (orange-crowned warbler, rufous hummingbird, song sparrow, Swainson's thrush, white-crowned sparrow and Wilson's warbler), Oregon Coast Range, US, 2011–2012. Treatments comprise Light (L), Moderate (M) and Intensive (I).

Betts et al. 2013 Forest Ecology & Management

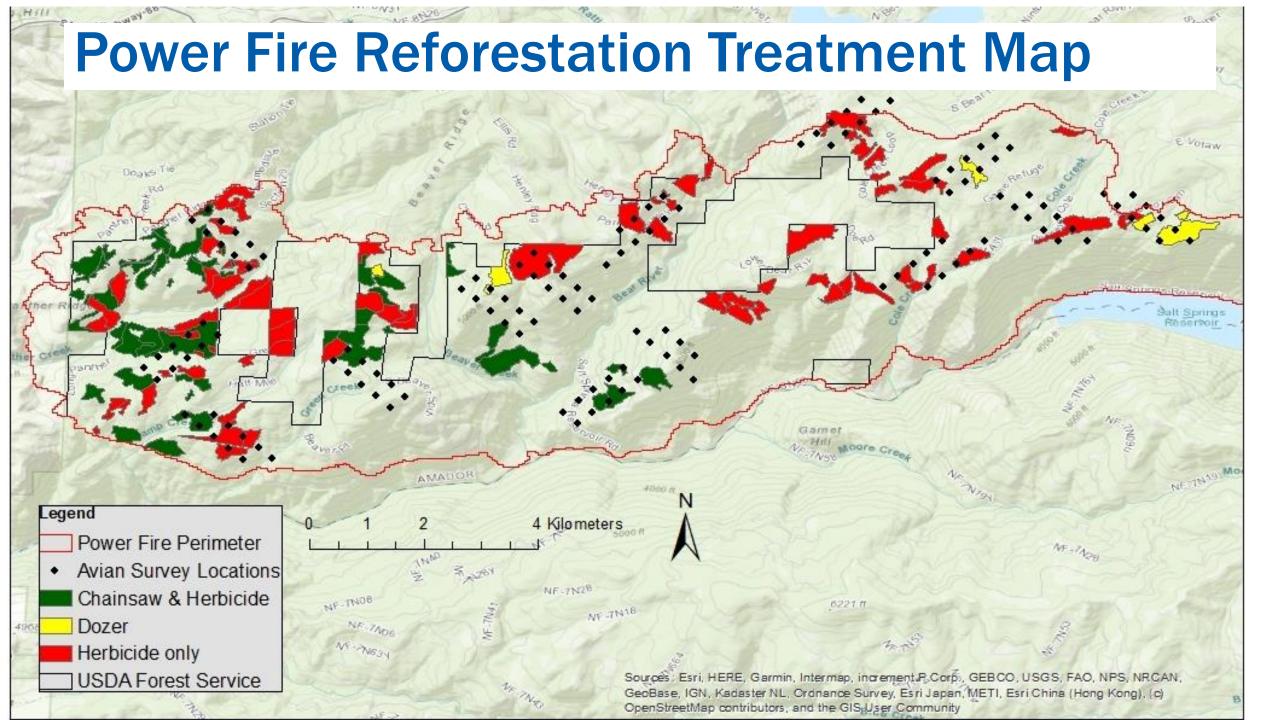
Power Fire Bird Research 2014-16, 2019-20

- Collected baseline bird data at 138 locations in 2014-2016 (10-12 years post-fire)
- Mechanical and herbicide treatments took place in 2018-19
- Resurveyed bird locations in 2019-2020 to measure effects 1-2 years post-treatment (and 15-16 years postfire)

Power Fire Burn Severity Map

West Panthe

Moore Creek


2017 Power Fire Reforestation ROD

- Treatments proposed across 3500 acres (~65% of CESF within USFS-owned fire area)
- Herbicide application to whitethorn ceanothus, bear clover, grasses and other herbaceous vegetation
- Chainsaw removal of deerbrush ceanothus followed up with herbicide application
- Glyphosate and triclopyr applied during spring 2018 and 2019 (during nesting season)
- Dozer piling and clearing, followed by conifer planting (did not analyze)

Before/After (Deerbrush clearing and herbicide)

Before/After (whitethorn ceanothus herbicide)

Before/After (dozer clearing, burning, replanting)

Survey Methods

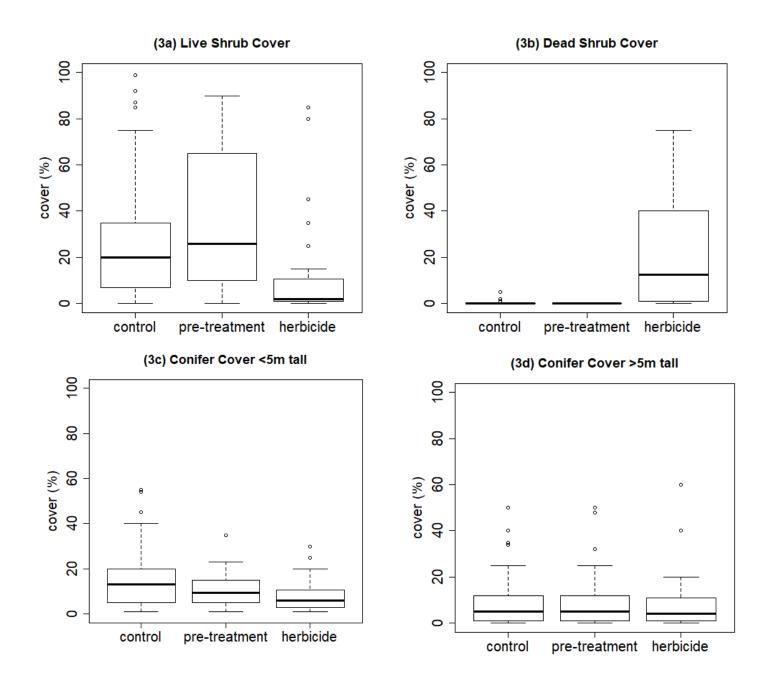
- Avian surveys 1-2/year during 2014-16 and 2019-20
- Vegetation surveys before/after treatments
 - Live Shrub cover
 - Dead shrub cover
 - Young conifer cover (<16ft tall)
 - Mature conifer cover (>16ft tall)

Analysis

Herbicide Effects

- Focused on complex early seral forest (CESF species)
- 31 treated locations and 53 control locations
- Mixed effects abundance modeling
 - Treatment and habitat covariates to estimate per-point abundance before and after treatments
 - ANOVA hypothesis test
 - time, treatment, time*treatment effect

Results


Vegetation Data

Pre-treatment points started out with higher shrub cover than control locations, but it was greatly reduced.

Large variation in dead shrub (skeletons) at herbicide points

Conifer cover (young [<5m tall] and mature [>5m tall]) was similar among treatments and years.

oint Blue

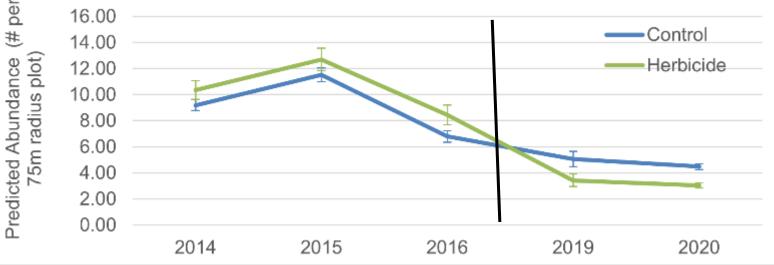
Abundance models show mechanisms of herbicide response

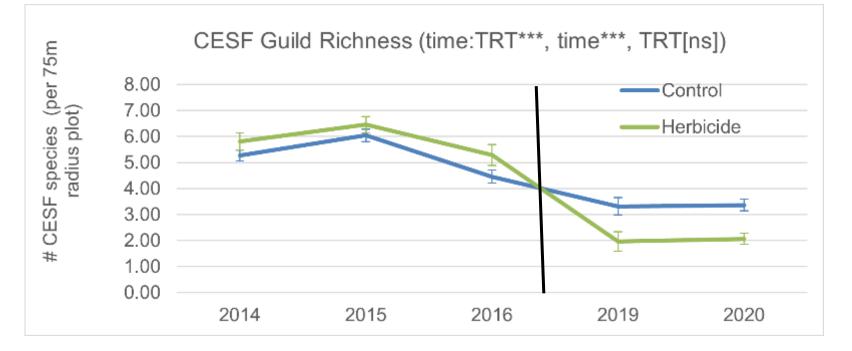
- Shrub Cover positive 5 species
- Young conifers (<5m tall) positive 2 species
- Mature conifers mixed positive and negative
- Treated covariate all negative except for Green-tailed Towhee

	Intercept	treated	salvaged	elevation	live basal area	shrub cover	dead shrub cover	young conifer cover	treated: salvaged
Fox	-2.28	-1.32	0.26	0.80	0.21	0.49	0.31	0.07	0.51
Sparrow	(0.16)	(0.56)	(0.20)	(0.09)	(0.09)	(0.08)	(0.10)	(0.09)	(0.61)
House Wren	-1.57	-1.08 (0.48)	-0.28*	-0.33	-0.56 (0.10)	-0.01 (0.07)	0.10 (0.12)	0.16 (0.07)	0.51
	(0.12)		(0.17)	(0.09)					(0.59)
Spotted Towhee	-1.75	-0.17 (0.37)	-0.01	-0.41	-0.05 (0.07)	0.18	-0.05	-0.02	-0.04
	(0.14)		(0.15)	(0.07)		(0.06)	(0.12)	(0.07)	(0.46)
Lazuli Bunting	-1.82	-0.25 (0.37)	0.12	-0.28	-0.45 (0.08)	0.09 (0.06)	-0.15 (0.12)	-0.02 (0.06)	0.02
	(0.17)		(0.13)	(0.07)					(0.46)
Nashville Warbler	-1.89	-0.23 (0.47)	-0.38*	-0.03	-0.13 (0.10)	0.05 (0.09)	-0.09 (0.13)	0.09 (0.09)	0.58
	(0.20)		(0.20)	(0.10)					(0.54)
Green-tailed		0.16	0.39	0.86	-0.21	0.07	0.09	0.09	-0.60
Towhee	(0.17)	(0.43)	(0.20)	(0.10)	(0.10)	(0.09)	(0.10)	(0.09)	(0.51)
MacGillivray's Warbler	-	-0.74	-0.21	0.20*	0.03	0.33	-0.09	-0.04	NA
	(0.17)	(0.56)	(0.23)	(0.11)	(0.10)	(0.10)	(0.18)	(0.11)	(NA)
Dusky Flycatcher	-3.17	-0.58 (0.65)	0.51*	0.55	0.29 (0.12)	0.35 (0.11)	0.18 (0.12)	0.25 (0.12)	0.59
	er (0.26)		(0.28)	(0.12)					(0.73)
Yellow Warbler	-3.79	-0.42 (0.84)	0.19	-0.10	0.01 (0.18)	0.77	-0.15	-0.11	-0.80
	(0.35)		(0.39)	(0.18)		(0.16)	(0.46)	(0.20)	(1.30)
Mountain	-4.08	-0.63	0.72*	0.39	0.34	0.28*	-0.02	-0.10	-0.03
Quail	(0.46)	(0.81)	(0.37)	(0.15)	(0.16)	(0.15)	(0.24)	(0.18)	(0.96)

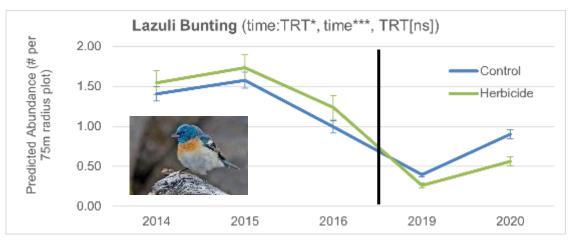
Results

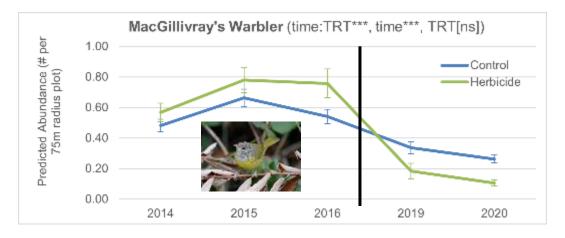
CESF Abundance and Richness

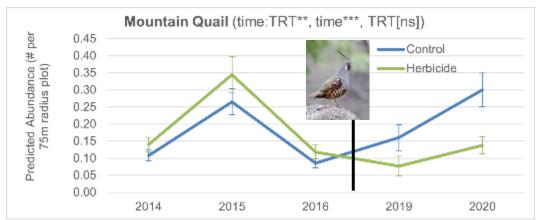

ANOVA tests indicate highly significant time, showing an overall declining trend, and treatment*time interactions, indicating negative herbicide effects


**Annual trends likely reflect climate/weather patterns but still concerning

Point Blue


per #





Summary

- Early seral species abundance and richness declined significantly in treated areas
- Likely due to reduction in habitat
- Results concur with other studies
- Shrub and hardwood retention may mitigate for negative effects

Management Recommendations

- Limit herbicide use during nesting season (May-August)
- Use a targeted approach with smallest radius around conifers
- Leave patches of intact shrubs and consider widening riparian buffers
- Evaluate the fire history of the watershed and consider leaving a larger part of the fire area unmanaged if watershed is largely undisturbed
- Consider whether reforested areas have high chance of conifer survival under future conditions
- Experiment with prescribed fire in plantations

Thank You

- Eldorado National Forest
- Amador Ranger District
- Amador Calaveras Consensus Group
- Project collaborators
- Field technicians