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A B S T R A C T

In historically frequent-fire forests of the western US there has been an increase in stand-replacing wildfire that is
well outside of the historical range of variability (HRV), leading to forest loss at unprecedented scales. As a result,
forest managers are increasingly applying forest management treatments designed to reduce the probability of
stand-replacing wildfire, by reducing the tree densities and woody debris that have accumulated after more than
a century of fire exclusion. Although these treatments have generally been shown to be effective, increasingly
warm and dry conditions may challenge the efficacy of these treatments. We compared fire severity (% basal area
mortality) in areas that had mechanical thinning with a follow up fire treatment (broadcast burning or pile
burning), mechanical thinning without a follow up fire treatment, and untreated areas in California’s largest
wildfire to date, the 2021 Dixie Fire. We found that the probability of stand-replacing wildfire (defined here as
100% basal area mortality) was highest on large fire growth days, and lowest in areas that were treated with
mechanical thinning and fire; mechanical thinning treatments with no follow up fire treatment did not differ
from untreated areas. Where stand-replacing wildfire did not occur, percent basal area mortality was reduced in
both the mechanical plus fire treatment and the mechanical-only treatment, both of which were characterized by
larger trees and lower densities. This suggests that the addition of the fire treatment is critical for reducing fire
severity under more extreme burning conditions, but that the mechanical-only treatments can still be effective
under milder burning conditions. We also found that the majority (93%) of our treated plots were within the
HRV for tree density prefire. Postfire, 79% of the plots with a mechanical thinning plus fire treatment remained
within HRV target conditions. In contrast, 48% of the mechanical thinning only plots, and 58% of untreated
plots, had no live trees. This work contributes to a growing body of evidence that forest treatments to reduce both
tree densities and surface fuels are critical for reducing fire severity and forest loss.

1. Introduction

The increase in both area burned and fire severity in the western US
in recent years has been linked with increasing fuel aridity, driven pri-
marily by warmer temperatures (Parks and Abatzoglou, 2020). In his-
torically frequent-fire forests of the western US, fuel build up has also
been identified as a driver of increased fire severity (Steel et al., 2015),
where over a century of fire exclusion has enabled significant increases

in tree densities and woody debris on the forest floor (Parsons and
DeBenedetti, 1979). Forest managers are increasingly implementing
forest treatments aimed at reducing fuel loads and restoring forest
structures to reduce the risk of extensive high severity fires (California
Wildfire and Forest Resilience Task Force, 2022), which have recently
been occurring at scales that are outside of the historical range of vari-
ation for frequent-fire forest types (Steel et al., 2018; Williams et al.,
2023). Increasingly severe wildfires in frequent-fire forest types can
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have substantial effects on biodiversity, recreational values, timber
production, and soil and water quality (Dove et al., 2020; Maestrini
et al., 2017; Miller and Safford, 2020).
The forest management treatments commonly used to reduce the risk

of severe fire include mechanical thinning and prescribed fire, which are
sometimes used in combination (Stephens et al., 2012a). Limited days
with appropriate weather and fuel conditions for burning, staffing and
other logistical constraints make prescribed fire incredibly challenging
to implement (Kolden, 2019; Schultz et al., 2019; Striplin et al., 2020),
leaving many forest managers to turn to mechanical thinning treatments
(e.g. tree removal by heavy equipment or by hand crews using chain
saws) as a more feasible fuel reduction treatment option. Treatments
strictly aimed at fuel reduction are often characterized as “thinning from
below” treatments, where smaller trees that can act as ladder fuels are
targeted for removal. There is increasing recognition that additional
removal of some larger trees is necessary to adequately reduce overall
tree density and to meet broader structural restoration objectives for
wildfire habitat and drought resilience (North et al., 2022; Stephens
et al., 2021; Young et al., 2017). Forest restoration projects therefore
often target a wider range of trees for removal, which can include larger,
more merchantable trees that may help offset the cost of treatments. In
addition to reducing the risk of high severity fire, forest treatments are
also implemented to improve wildlife habitat, shift species composition
and restore forest structure, with the goal of increasing resilience to
drought and insect outbreaks (Fettig et al., 2022; Young et al., 2017).
A significant body of research has supported the efficacy of fuels

treatments and forest restoration in moderating fire behavior, particu-
larly when mechanical thinning is followed by prescribed fire (Fulé
et al., 2012; Pollet and Omi, 2002; Prichard et al., 2020; Safford et al.,
2012, 2009; Taylor et al., 2022; Tubbesing et al., 2019). While me-
chanical thinning can help reduce ladder fuels and increase tree crown
separation, it does not remove surface fuels, which are a primary driver
of wildfire spread and intensity (Scott and Burgan, 2005). Moreover,
depending on the specific method of tree removal, mechanical thinning
can increase surface fuels for some time after treatment due to slash
creation (Stephens et al., 2012a), or through the creation of piles to be
burned in the future. Following up mechanical treatments with broad-
cast burning or pile burning can help reduce surface fuels and any
additional fuels that are created during the mechanical treatment.
Because these forest restoration treatments have been shown to be

generally effective, some have claimed that fuel treatment effectiveness
no longer merits investigation (Safford et al., 2012). However, wildfire
impacts in treated areas remain of interest for two key reasons. First,
there is concern that the warming climate may be reducing the efficacy
of fuels treatments. Evidence already suggests that treatments are less
effective at moderating fire behavior under extreme fire weather con-
ditions (i.e. higher temperatures, lower relative humidities, etc.
(Lydersen et al., 2014; Prichard et al., 2020)). In recent years the fre-
quency of more extreme burning conditions is on the rise (Parks and
Abatzoglou, 2020), to the extent that two recent wildfires in California’s
Sierra Nevada have crossed the Sierra Crest for the first time. Examining
fuels treatments in recent large wildfires is still warranted, both to track
and anticipate shifts in their efficacy, and to adapt future management
actions to meet these changing conditions.
Second, most research attention around forest treatments and wild-

fire is focused on the ability of treatments to reduce fire severity (Fulé
et al., 2012; Lydersen et al., 2014; Pollet and Omi, 2002; Prichard et al.,
2020; Stephens et al., 2012b). Yet how a wildfire interacts with treat-
ment to influence postfire stand trajectories is less well understood. With
the recent increases in fire activity, there are rising calls to work with
wildfire, leveraging beneficial effects where possible (Larson et al.,
2022; Meyer et al., 2021; Prichard et al., 2021). Indeed, in some areas,
wildfires can have similar restorative effects on forest vegetation as
broadcast burning, thereby acting as either an initial fuels reduction
treatment or a maintenance treatment (Chamberlain et al., 2023; Collins
et al., 2016; Jeronimo et al., 2019; Low et al., 2023). Understanding how

wildfires interact with fuel reduction treatments to impact postfire stand
condition is critical for understanding the conditions under which
wildfires can enhance or degrade forest conditions relative to restoration
targets.
In this study, we examine the efficacy of forest restoration treatments

in reducing the probability of stand-replacing wildfire (defined here as
100% basal area mortality) and in moderating overall fire severity, in
the 2021 Dixie Fire. We also examine how wildfire interacted with those
treatments to influence postfire stand conditions. As California’s largest
wildfire to date (389,837 ha), the Dixie Fire serves as a suitable case
study due to its size, heterogeneous burning conditions, and abundance
and variety of pre-fire fuels reduction treatments, which collectively
represent a spectrum of common conditions in western montane mixed
conifer forest types. We sampled mechanical thinning treatments that
targeted the removal of both smaller ladder fuels for fuel reduction goals
and some larger trees for broader forest structure related goals. Some of
these areas additionally had either a broadcast burn or pile burning
following the thinning treatment. All treatment areas were paired with
untreated areas. Specifically, we asked:

1) What was the variation in prefire forest structure across treated and
untreated areas?

2) What was the variation in basal area mortality and crown scorch
across treated and untreated areas?

3a) How do prefire treatment, weather and topography influence the
probability of stand-replacing wildfire?
3b) Where stand replacement did not occur, what drove the variation

in fire severity?
4) How closely did prefire stand structure match desired conditions, and
how did those conditions interact with the wildfire to shape post-fire
conditions?

2. Methods

2.1. Study area

The Dixie Fire burned primarily on the Plumas and Lassen National
Forests in northern California (Fig. 1). Our sampling sites ranged from
1537-m to 2248-m in elevation and were mostly in yellow pine and
mixed conifer forest types, which included ponderosa pine (Pinus

Fig. 1. Site sampling locations in the Dixie Fire.
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ponderosa Lawson& C. Lawson), sugar pine (Pinus lambertiana Douglas),
Jeffrey pine (Pinus jeffreyi Grev. & Balf.), white fir (Abies concolor
(Gordon& Glend.) Hildebr.), incense-cedar (Calocedrus decurrens (Torr.)
Florin), and Pacific Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var.
men-ziesii), with a lesser component of black oak (Quercus kelloggii
Newb.). Fires in these forest types were historically frequent, occurring
at mean intervals of 11–16 years and resulting in predominantly low-
moderate severity fire effects (Safford and Stevens, 2017). Roughly
17% of surveyed plots were in red fir forests, which were dominated by
red fir (Abies magnificaA.Murray bis), white fir and lesser components of
the pine species, including two sites with lodgepole pine (Pinus contorta
Louden ssp. murrayana (Grev. & Balf.) Critchf.). The fire return interval
in red fir was 33–40 years (Van deWater and Safford, 2011). The climate
is characterized as Mediterranean, with cool, wet winters and warm, dry
summers.
The Dixie Fire ignited on July 13, 2021, and quickly spread to

encompass 389,837 ha (963,309 acres) before it was contained on
October 25, 2021 (CAL FIRE, 2021a). Heavy fuel loads and dense forest
conditions, combined with hot weather, high wind speeds, exceptionally
dry vegetation, and steep terrain, contributed to large fire growth,
making the Dixie Fire the largest fire in California history to date.
Approximately 45 % of the burned area (173,437 ha) experienced high
severity fire effects (i.e., more than 90 % of the prefire basal area was
killed), most of which occurred in large contiguous patches (RAVG,
2021).

2.2. Study design

To select sampling sites, we queried the US Forest Service (USFS)
Forest Activity Tracking System (FACTS) database and selected treat-
ment units where treatments occurred between 2001 and 2020. We
selected mechanical treatments that were designed to restore forest
structure and composition, and to facilitate reintroduction of low
severity, frequent fire. For the Dixie Fire, these included the following
activities, which we classified as mechanical treatments: commercial
thin, group selection, compacting/crushing of fuels, piling of fuels (hand
or machine), precommercial thin. These occurred singly or in combi-
nation, but most sites included removal of smaller trees that can act as
ladder fuels (<25.4 cm (10”) diameter at breast height (DBH)) and
larger trees (25.4 cm - 76.2 cm (30”) DBH) to meet density and struc-
tural targets. We lumped mechanical treatment types of varying in-
tensities due to small sample size and lack of access to more detailed
treatment information. These sites were classified as Mechanical only.
We also selected mechanically treated sites that were followed up by a
fire treatment (broadcast burning or pile burning) to reduce surface fuels
which were classified as Mechanical + fire. We defined Untreated areas
as having had no active management since 2000; most of our Untreated
areas had no documented management history, with the exception of
three sites that had some sanitation cuts between 1967 and 1998, which
were generally single tree selection (Table 1). We selected treatment
units that were at least 81 ha (200 acres) and that were situated where
the boundary between untreated and treated areas did not cross features
that could function as a fire break (e.g., a road, riparian area, trail).
Access and safety were also considered, resulting in twelve treatment
sites (Fig. 1, Table 1).
Within each study site, we installed forest inventory plots (i.e.,

modified USFS Common Stand Exam plots (USDA Forest Service, 2007))
inside and outside of the treatment areas. Plot locations were selected in
relation to transects that began in the untreated area and moved into the
treated areas, which were installed as part of a separate but related
project on fuel treatment effectiveness, following methods from Safford
et al. (2012) (note: data specific to the transects are not presented here
but are included in Saberi et al. in prep; details on the transects are
presented here to describe plot installation only). We installed 1–4
transects at each site, where each transect had at least one associated
forest inventory plot inside the treatment area and one outside the

treatment area. Of the 1–4 transects per site, we selected 1–2 transects
where we installed four additional plots around the transect in the un-
treated area, and four additional plots in the treated area. This design
resulted in variable numbers of plots per site (Table 1). In addition to
relying on spatial data from the FACTS database to determine previous
management, field crews inspected sampling areas to confirm the
boundaries were accurate by looking for cut stumps and adjusting the
transect and plot locations as needed. We initially installed 33 Me-
chanical + fire, 52 Mechanical-only and 86 Untreated plots for a total of
171 plots (Table 1). Because all treated plots were≤38 % slope, we later
excluded seven untreated plots that occurred on>38 % slopes, resulting
in a total of 164 candidate plots. All sites were occupied by mature,
Sierra Nevada mixed conifer or red fir forest types prefire.

2.3. Field measurements

At each 0.04 ha (~0.1 ac) circular plot, we measured all overstory
trees (> 10 cm DBH), recording species, live/dead status (differentiating
prefire snags, or trees that were dead before the fire, from fire-killed
trees), DBH, tree height and percent crown damage (the proportion of
the crown where needles were either consumed (torched) or killed but
not consumed (scorched)). Trees were designated as prefire snags based
on a qualitative assessment of the bark and branches; prefire snags
typically are missing much greater proportions of bark and branches
than trees live at the time of fire. It is possible some prefire snags were
incorrectly classified as prefire live trees, and vice versa, but we believe
that number to be small due to clear differences in prefire snag vs.
prefire live tree characteristics.

Table 1
Treatment sites with treatment type, year of last treatment, the number of
transects and forest inventory plots. In some cases, the treatments occurred up to
two years apart at a given site so the last treatment is shown as a range (note:
West Dusty had one plot that was re-treated 13 years after the initial 2001
treatment). For Mechanical + fire plots, the year of last treatment is the fire
treatment. Note, transect data are not included in this study but the number of
transects is shown here to detail the sampling design.

Site Treatment
class

Year of last
treatment

Number
of
transects

Number of plots

Treated
plots

Untreated
plots

Cate
Place

Mechanical-
only

2004 2 6 6

Green
Flat

Mechanical
+ fire

2003–2005 1 11 9

Robbers
North

Mechanical
+ fire

2009 1 5 5

Robbers
South

Mechanical
+ fire

2009 1 5 5

Silver
Lake

Mechanical-
only

2006 4 12 12

South
station

Mechanical
+ fire

2010 1 5 5

Swain Mechanical-
only
Mechanical
+ fire

2016–2018
2020

1
1

7
3

10
0

Turner
Grizzly

Mechanical-
only

2016 3 10 11

Ursa Mechanical-
only

2019 2 2 2

Warner Mechanical
+ fire

2012 0 4 6

West
Dusty

Mechanical-
only

2001–2014 1 5 5

Yellow Mechanical-
only

2017–2019 2 10 10

Total: 23 85 86
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2.4. Forest structure variables

We calculated total tree density and basal area per plot. We also
classified each species by shade tolerance, (shade intolerant: ponderosa
pine, Jeffrey pine, sugar pine; shade tolerant: white fir, red fir, incense
cedar, Douglas-fir), and calculated tree density and basal area by shade
tolerance. We calculated quadratic mean diameter (QMD), which is the
diameter of the tree with average basal area. It is calculated as the
square root of the arithmetic mean of squared diameters (Curtis and
Marshall, 2000) and is commonly used as an indicator of forest structure
or developmental stage. Stands with larger QMDs generally indicate a
more advanced stage of development characterized by larger trees.
We also used relative Stand Density Index (relSDI) to assess stand

condition (Reineke, 1933). This metric considers tree size and density
and provides a relative measure of inter-tree competition or crowding.
We used the summation method to calculate the relSDI (Long and
Daniel, 1990), which is expressed as a percentage of the maximum Stand
Density Index, where the maximum value is determined by forest type
and local conditions. We followed methods described in North et al.
(2022) to classify our plots into forest types based on basal area by
species and then assigned maximum SDI values for each (ranging from
902 to 1112 trees ha− 1).
For all forest structure variables, we calculated prefire and postfire

conditions. Prefire structure was reconstructed by summing both live
and fire-killed trees but excluding prefire snags.

2.5. Consideration of desired conditions

Because HRV has been commonly used to define desired conditions,
we classified prefire stand structure in relation to the Historical Range of
Variation (HRV) to evaluate wildfire effects in forests that were within
the HRV compared to those that were outside of the HRV prior to the
fire. We also classified postfire stand structure in relation to HRV to
evaluate how wildfire interacted with treatment to influence postfire
conditions. We used HRV targets based on historical stand re-
constructions from throughout the Sierra Nevada region, which suggest
a basal area of 21 m2ha− 1 to 54 m2 ha− 1 and tree density of 60 ha− 1 to
328 ha− 1 (Safford and Stevens, 2017). Plots were classified as being in
above HRV within HRV or below HRV for both basal area and tree density
separately; for tree density, there were only two plots below HRV prefire,
so they were lumped into within HRV. For postfire HRV classifications,
we separated within HRV from below HRV, and additionally identified
plots where there were no live trees postfire.
We also compared our relSDI with two established relSDI thresholds:

the established threshold of “low competition” (34 % of maximum SDI),
and the relSDI for historical reference conditions (defined as 23–28 %;
(North et al., 2022)). We also explored how postfire conditions
compared to management goals to shift stands toward more open con-
ditions that are characterized by fewer, larger trees, and that are
pine-dominated (North et al., 2009), by exploring shifts in QMD as well
as shifts in basal area and tree density by shade tolerance.

2.6. Weather and topographic variables

For the Dixie fire, we created a fire progressionmap usingMODIS fire
detection data following established protocols (Parks, 2014). We then
assigned a burn date to each plot, and for each date extracted the
following weather variables from GridMET (Gridded Surface Meteoro-
logical Data (Abatzoglou, 2013)): minimum and maximum temperature,
minimum and maximum relative humidity, vapor pressure deficit,
1000 hour fuel moisture, Energy Release Component (ERC) and Burning
Index (BI). GridMET has a horizontal resolution of ~4-km and captures
mesoscale features in weather across a landscape but does not capture
finer-scale weather-terrain details that may be present in complex
terrain. Both BI and ERC were derived from the US National Fire Danger
Rating System (Cohen and Deeming, 1985) for a common fuel model (G

– dense conifer stands with abundant dead surface fuels). These metrics
integrate weather and fuel characteristics, where higher indices reflect
the potential for increased fire behavior. BI reflects fire-line intensity
and is more strongly influenced by wind speed, whereas ERC is more
related to the seasonal drying of available fuel, including the larger
diameter fuels that are found in forested ecosystems.
We also explored two proxies for extreme fire behavior. We tested

the total hectares burned across the entire wildfire on the date the plot
burned. But, since the fire was so large, there could be large growth in
total area that was spread across multiple flaming fronts, so we also
tested the perimeter to area ratio of area burned on the date the plot
burned. To examine the effect of topography, we extracted percent slope
and aspect from 10 m digital elevation models. Aspect was cosine
transformed into “northness” for analyses.

2.7. Statistical analyses

We tested differences in forest structure variables by the three-class
treatment variable (Q1), using generalized linear mixed models
(GLMMs). For prefire tree density (trees ha− 1), we used a negative
binomial distribution, and for the remaining prefire forest structure
variables (basal area, QMD and relSDI) we used a Gaussian distribution.
All models had a transect identifier nested within site as the random
effect and were run using the glmmTMB package (Brooks et al., 2017) in
R (R Core Team, 2023). We then used the emmeans package (Lenth,
2023) to calculate pairwise comparisons within the treatment variable
using Tukey contrasts. Basal area was square root transformed to meet
assumptions of normality.
To explore differences in fire severity by treatment (Q2), and to

model the influence of topographic, weather, forest structure, treatment
and time-since-treatment on fire severity (Q3), we used percent basal
area mortality as our response variable. Because percent basal area
mortality was heavily one-inflated due to 100 % mortality at many
plots, we used a two-stage modelling approach. First, we used GLMMs
with a binomial distribution to explore the drivers of stand-replacing
wildfire (defined here as 100 % basal area mortality) versus non-stand
replacing wildfire (<100 % mortality). High mortality that is less than
100 % can still result in stand replacement, depending on how a stand is
defined (e.g., the USFS defines a forested area as having >10 % tree
cover (USDA Forest Service, 2023)), but here we are using the term to
refer to complete loss of overstory trees, to capture the drivers of the
extreme end of the high severity fire effects (which generally includes
75–100 % basal area mortality (Miller et al., 2009)). We then explored
GLMMs with a beta distribution on a subset of the data that was <1
(<100 % basal area mortality), adding 0.001 to zeros in the dataset to
meet the assumptions of the beta distribution. All analyses were con-
ducted at the plot level, with the transect identifier nested within site as
the random effect.
One of the sites (South Station; 10 plots) burned with very high

mortality on one day (September 10th) with extreme weather conditions
for our dataset that are not generally linked with severe fire weather,
including maximum relative humidities of 100 %, a BI of 0 and ERC of
51 (substantially lower than the other burn days). We hypothesize that
this was the result of a frontal passage that occurred on that day and
brought erratic winds with gusts up to 46 mph (CAL FIRE, 2021b), and
that the plots burned prior to the onset of rain. Since this represented
unique conditions at just one site, we excluded that site from further
analysis. After removal of this site, there were 28 Mechanical + fire
plots, 52 Mechanical-only plots and 74 Untreated plots for a total of154
plots in the binomial model predicting the probability of stand-replacing
wildfire (Q3a).
For the beta models assessing the drivers of percent basal area

mortality in the absence of stand replacing fire, there were 83 plots that
did not experience stand-replacement. However, 17 of these plots lacked
a paired match in both the untreated and treated areas within a site (for
instance, all plots within the untreated area burned with 100 % basal
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area mortality). We found large relative differences in percent basal area
mortality between treated and untreated areas across sites and were
concerned that these 17 unpaired plots would skew the results. We
therefore excluded those 17 plots from this analysis, leaving 66 for the
beta model analyses (20 Mechanical + fire, 919 Mechanical only and 27
Untreated).
To build comprehensive models for Q3a and Q3b, we first examined

univariate models for all variables of interest (treatment, weather,
topography, forest structure variables) and considered any that were
significant at p < 0.1 to be candidate variables for a comprehensive
model (Hosmer and Lemeshow, 2000). For variables that were moder-
ately to highly correlated (Pearson correlation coefficient > 0.5), we
selected the final candidate variable that had the lowest Akaike infor-
mation criterion (AIC). AIC is the log-likelihood of the model (a measure
of overall model fit) adjusted for the number of parameters in the model.
We scaled and recentered all predictors in the comprehensive model. We
then examined models with all candidate variables included, and
removed those that were no longer significant when their inclusion did
not improve model fit by at least two AIC units.
We tested how well prefire HRV classifications alone predicted

mortality for Q4, using the same two-stage modelling approach as for Q2
and Q3 (binomial to predict stand-replacing wildfire and beta to predict
the percent of basal area mortality on plots that did not experience stand
replacement).

3. Results

3.1. Variation in forest structure across treatments

Prefire tree density was roughly three times lower in both
Mechanical-only plots and Mechanical+ fire plots than in the Untreated
areas (p < 0.001 for both; Fig. 2), but there was no difference between
the two treatment types (p = 0.667). Median basal area was roughly
twice as high in the Untreated plots (median: 52 m2ha− 1) as compared
to the Mechanical+ fire plots (median: 24 m2ha− 1, p < 0.001) and the
Mechanical-only plots were intermediate between the two (median:
39 m2ha− 1, p = 0.003); differences between the two treatments were
only marginally significant (p = 0.070). Median relSDI in the Untreated
plots was higher (78 %) than Mechanical + fire and Mechanical-only
plots (p < 0.001 for both), but there was no difference between the
Mechanical-only plots (46 %) and Mechanical + fire plots (31 %; p =

0.131). Finally, QMD was significantly higher in the Mechanical-only
plots (median 50 cm) than the Untreated plots (median: 33 cm; p <

0.001) and the Mechanical + fire plots (median 42 cm; p = 0.001), and
the difference between treatments was also significant (p = 0.014;
Fig. 2).

3.2. Variation in first order fire effects across treatments

When considering pairwise comparisons, the probability of stand-
replacement in Mechanical + fire plots (4 %) was significantly lower
than in Untreated plots (61 %, p = 0.004) and Mechanical-only plots
(42 %, p = 0.049; Fig. 3a). Of the 28 Mechanical + fire plots, only three
experienced stand-replacing wildfire. There was no difference in the
probability of stand-replacement between the Untreated and
Mechanical-only plots (p = 0.321). For plots that did not experience
stand-replacing wildfire, there was no difference in percent basal area
mortality between the Mechanical-only and Mechanical+ fire plots (p=
0.224), but both had significantly lower percent basal area mortality
than the Untreated plots (p < 0.001 for Mechanical + fire; 0.003 for
Mechanical only). Fig. 3a shows the raw percent basal area mortality by
treatment for all plots.
We did not test for differences in first order fire effects on the canopy

as they are directly correlated with stand-replacement and basal area
mortality; however, we present the results here to show the range of
effects across treatment types. Percent crown scorch was generally

highly variable within treatment, but the median percent torch was
much lower in Mechanical-only plots compared to Untreated plots, and
even lower in the Mechanical + fire plots (Fig. 3b).

3.3. Modeling results

3.3.1. Drivers of stand-replacing wildfire
Based on the univariate binomial models testing the drivers of stand-

replacing fire (100 % vs. <100 % basal area mortality), final candidate
variables were tree density, QMD, percent slope, daily hectares burned,
perimeter:area of daily hectares burned (PAratio), minimum relative
humidity and maximum relative humidity, ERC and treatment (p-
values, coefficients and AIC values for all univariate models can be
found in Supplemental Table A1). Increasing tree density, percent slope,
daily ha burned, PAratio and ERC were all associated with an increase in
the probability of stand-replacing wildfire; in contrast, increases in
QMD, minimum relative humidity and maximum relative humidity all
decreased the probability of stand-replacing wildfire (p-values, co-
efficients and AIC values for all univariate models are provided in

Fig. 2. From left to right, plot-level prefire tree density, basal area (top row),
relative Stand Density Index (relSDI) and quadratic mean diameter (QMD)
(bottom row) by treatment class. Boxplot width is scaled by sample size, where
boxes denote first and third quartiles, lines the median, and whiskers the 1.5
inter-quartile range. Dots are outliers.
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Supplemental Table A1).
Total daily ha burned was somewhat correlated with PAratio

(Pearson correlation coefficient (r) = 0.67) and PAratio performed better
in terms of AIC (166.5 vs. 169.1), so we explored PAratio in the
comprehensive model. Minimum and maximum humidity were also
correlated (r= 0.80) and the univariate models did not differ in terms of
AIC (169.6 vs. 171.6, respectively), so we explored minimum relative
humidity as it is the more traditional metric used to predict fire severity.
The best comprehensive model included PAratio and treatment. The

other candidate variables became insignificant, and their inclusion did
not improve AIC. The probability of stand-replacing wildfire increased
with decreasing PAratio (indicative of large growth days; p < 0.001).
The probability of stand-replacing wildfire was significantly lower in the
Mechanical + fire treatment (p < 0.001) as compared to the Untreated
plots, but the Mechanical-only plots did not differ from the Untreated
plots (p = 0.261; Fig. 4). Note that the Mechanical + fire treatments
burned on days with generally lower relative humidities, so these could
be confounded; however, BI’s were higher for the Mechanical + fire
plots, suggesting the weather data overall are somewhat difficult to
interpret. Moreover, this model still outperformed models that included
minimum relative humidity in addition to, or instead of, the treatment
variable.

3.3.2. Variation in basal area mortality
For our models predicting percent basal area mortality on plots that

did not burn with stand-replacement, the final candidate variables were:
tree density, shade-tolerant tree density, basal area, QMD, relSDI,
treatment and BI (p-values, coefficients and AIC values for all univariate
models can be found in Supplemental Table A1). Tree density, shade-
tolerant tree density, basal area and relSDI all had positive relation-
ships with increasing percent basal area mortality, whereas QMD had a
negative relationship. BI was counterintuitive, with increasing mortality
related to decreasing BI, but it was not significant in the comprehensive
model and did not improve fit in terms of AIC. Since tree density and
shade tolerant tree density were highly correlated (Pearson correlation
coefficient: 0.91), we explored total tree density in the comprehensive
model because it had a lower AIC in the univariate models (174.0 vs.
171.4).
Combining the treatment variable with the forest structure variables

did not improve the model over the univariate model with treatment
alone (AIC: − 219.3), where percent basal area mortality was reduced in
areas that had either a Mechanical + fire treatment (p <0.001) or a
Mechanical-only treatment (p < 0.001; Fig. 5). We note that when QMD

is included in the model, the Mechanical-only treatment becomes only
marginally significant (p = 0.068), suggesting that the differences in
response by treatment are partly explained by differences in QMD. Both
treatments had a higher QMD than the Untreated plots, with the
Mechanical-only treatment having the highest median QMD.
To explore this further, we also created a model with the forest

structure variables and a version of the treatment variable that only
accounted for the fire treatment. In this alternative treatment variable,
we lumped the Mechanical-only plots with Untreated plots that had no
prefire fire treatment, so that the forest structure variables could explain
the differences in forest structure that resulted from the thinning treat-
ment, while still accounting for the reduction of surface fuels that occurs

Fig. 4. (a) Probability of stand-replacing wildfire as predicted by perimeter to
area ratio with a fitted line for the treatment variable from the final compre-
hensive binomial model. (b) Model coefficients with 95 % confidence intervals
from the comprehensive binomial model.

Fig. 3. Percent basal area mortality (a) and postfire crown condition (b) by
treatment. Boxplot width is scaled by sample size, where boxes denote first and
third quartiles, lines the median, and whiskers the 1.5 inter-quartile range. Dots
are outliers.

Fig. 5. Model coefficients with 95 % confidence intervals from the compre-
hensive model predicting the change in basal area mortality on plots that did
not experience stand replacement, as a function of treatment type. Model es-
timates are relative to the Untreated treatment class.
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with a fire treatment. The best comprehensive model using this alter-
native treatment variable (prefire fire treatment vs no prefire fire
treatment) also included relSDI and QMD. This model performed better
(AIC: − 222.3) than the model with the three-class treatment variable
alone (-219.3) or any of the forest structure variables on their own in
univariate models (Supplemental Table A1). Percent basal area mor-
tality was lower in areas that had the prefire fire treatment (p = 0.010),
and increasing mortality was associated with increasing relSDI (p =

0.044) and decreasing QMD (p < 0.001; Fig. 6). This suggests that the
significant reduction in percent basal area mortality in the Mechanical-
only treatments in the model with the three-class treatment variable
(Fig. 5) is due to a forest structure that is dominated by a lower density of
larger trees, as compared with Untreated areas (Fig. 2). Where this
structure was naturally occurring in some of the Untreated areas, fire
severity was also reduced.

3.4. Pre- and post-fire forest structure comparisons

3.4.1. Comparison of pre- and postfire HRV for tree density and basal area
Broadly, the fire moved basal area and/or tree density of some plots

from above HRV into target ranges for HRV, but it also moved many plots
to well below those ranges, to the extent that many plots had no live
trees postfire. Fig. 7 shows where the plots fit in relation to both basal
area and tree density HRV ranges, which is outlined in the shaded box,
both pre- and postfire.
When using the HRV classes as predictors in statistical models, plots

with prefire tree density within HRV had significantly lower probability

of burning with stand replacement (29 %, p = 0.007) than plots that
were above the HRV range (61 %). For plots that did not burn with
stand-replacement, plots that were within HRV for prefire tree density
had significantly lower fire-caused percent basal area mortality (13 % p
< 0.001) versus those that were above HRV (37 %). Prefire basal area
HRV classes were good predictors of stand replacing wildfire. For plots
that did not burn with stand replacement, percent basal area mortality
was higher in areas that were above HRV and lower in areas that were
below HRV for basal area as compared to within HRV, but those differ-
ences were not significant (p = 0.083; p = 0.091).In terms of AIC,
models with the HRV classification based strictly on tree density
(binomial: 166.6; beta: − 212.0) outperformed the classification based
on basal area (173.3; − 200.0); adding basal area to the tree density
model did not improve model performance (168.2; − 208.6), so we base
our remaining exploration of HRV on tree density only.
Prefire median tree densities for both Mechanical + fire and

Mechanical-only treatment types were within the target HRV range, but
the Untreated median density was well above the HRV range. Postfire,
the median tree density for the Mechanical + fire treatment remained in
the target HRV range, whereas the median for both the Mechanical-only
and Untreated areas were near zero or zero (no live trees) (Fig. 8). The
difference in prefire to postfire density was greatest for the Untreated
plots.

3.4.2. Pre- and postfire transitions in HRV classes for tree density
Prior to the fire, 24 (86 %) of the Mechanical + fire plots were within

HRV for tree density, and of those plots, 82 % stayed within HRV, and

Fig. 6. Percent basal area morality for plots that did not experience stand replacement as predicted using an alternative treatment characterization (prefire fire
treatment vs no prefire fire treatment). Percent basal area mortality was also predicted by (a) QMD and (b) relSDI; the fitted lines are for the alternative treatment
variable. (c) Model coefficients with 95 % confidence intervals, where model estimates are relative to the No prefire fire treatment class.
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14 % had no live trees remaining postfire (Fig. 9). For the Mechanical-
only treatment, 96 % of the plots were within HRV prefire, but in
contrast with the Mechanical + fire treatment, only 42 % of the plots
remained within HRV and 48 % had no live trees remaining postfire, and
the remaining 10 % of plots were below HRV following the fire. In the
Untreated plots, only 15 plots (20 %) were within HRV prefire; of these,
half had no live trees postfire. The majority of Untreated plots (85 %)
were in the above HRV class for tree density prefire. Postfire, 58 % of the
Untreated plots had no live trees postfire, whereas 16 % remained above
HRV, and 5 % were below HRV (Fig. 9).

3.4.3. Comparison of pre and postfire QMD and relSDI with desired
conditions
We present two additional metrics that are relevant to forest resto-

ration: QMD and relSDI. We are unaware of quantitative restoration
goals that rely specifically on QMD, but generally, increasing QMD

would help meet overarching goals of growing lower density forests
dominated by larger trees. The Mechanical + fire treatment plots had a
slight increase in median QMD postfire, whereas Mechanical-only
treatment plots had a substantial decrease in median QMD, and Un-
treated stands had a median postfire QMD of zero (Fig. 10a).
Prefire median relSDI was below the low competition threshold

(34 % of maximum SDI) for Mechanical + fire, but slightly above the

Fig. 7. Plots by basal area and tree density, pre- and postfire and by treatment class. Gray boxes outline plots that are within the HRV for both basal area and tree
density. Note how many exceeded these targets prefire and how many shifted to below these targets postfire. Two Untreated plots >1500 trees per hectare were
removed and points were jittered to increase plot readability.

Fig. 8. Tree density by treatment type, and prefire and postfire. The dashed
lines represent HRV target ranges. Boxplot width is scaled by sample size,
where boxes denote first and third quartiles, lines the median, and whiskers the
1.5 inter-quartile range. Dots are outliers.

Fig. 9. The proportion of plots in the Dixie fire that were classified into HRV
ranges for tree density both prefire and postfire, highlighting the transitions
between the two states.
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reference range (23–28 %) from North et al. (2022), whereas the
Mechanical-only and Untreated plots exceeded both the low competi-
tion threshold and reference range. Wildfire reduced the relSDI for all
treatment classes, but had the strongest effect in Untreated stands, were
the postfire median was zero. In Mechanical-only plots, the postfire
median was slightly higher (9 %), but still well below the reference
range. The fire moved the median relSDI for Mechanical + fire to just
above the reference range (29 %, Fig. 10b).

3.4.4. Comparison of pre- and postfire conifer species composition with
desired conditions
Since a common restoration goal for mixed conifer forests in the

Sierra Nevada is to shift stands toward pine dominance, we also looked
at changes in the proportion of shade intolerant species (sugar pine,
ponderosa pine, Jeffrey pine) pre- and postfire by treatment class. For
Mechanical + fire treatments, the basal area of shade intolerant species
was virtually unchanged, and shade intolerant tree density increased

slightly. For Mechanical-only and Untreated plots, there was a larger,
but still modest decrease in the proportion of shade intolerant basal area
and tree density (Fig. 11).

4. Discussion

Our results suggest that, while mechanical thinning treatments can
be effective at restoring forest structure to within the historical range of
variation, the combination of mechanical and fire treatments is most
effective at creating forest conditions resilient to wildfires burning under
a range of conditions. The inclusion of a fire treatment (pile or broadcast
burning) with the mechanical treatment resulted in a lower probability
of stand replacing fire, reduced levels of canopy torching, lower percent
basal area mortality, and fewer plots transitioning to an unforested state
than areas that had only mechanical treatments or were untreated.
Other important predictors of stand replacing fire were slope steepness
and large fire growth (represented by the perimeter:area ratio). In areas

Fig. 10. (a) Quadratic mean diameter (cm) and (b) relative Stand Density Index (relSDI, %) by treatment class, pre- and postfire. For relSDI (b), the threshold for low
competition (34 %) is shown with a dashed line. Solid lines represent the historical range of variation estimated for stands in the southern Sierra Nevada (23–28 %)
by North et al. (2022). Boxplot width is scaled by sample size, where boxes denote first and third quartiles, lines the median, and whiskers the 1.5 inter-quartile
range. Dots are outliers.

Fig. 11. Pre- and postfire proportions of shade intolerant tree species by basal area (left) and tree density (right). Boxplot width is scaled by sample size, where boxes
denote first and third quartiles, lines the median, and whiskers the 1.5 inter-quartile range. Dots are outliers.
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where stand-replacing wildfire did not occur, fire severity was reduced
in both the Mechanical-only and Mechanical + fire treatments, which
had higher QMDs and lower relSDIs than the Untreated areas.

4.1. Drivers of stand-replacing wildfire and gradients of fire severity

Our finding that the addition of the fire treatment after mechanical
thinning reduced both the probability of stand replacement as well as
percent basal area mortality is consistent with a growing body of evi-
dence supporting the importance of following mechanical treatments
with a fire treatment to reduce surface fuels and slash (Brodie et al.,
2024; Davis et al., 2024; Fulé et al., 2012; Kalies and Yocom Kent, 2016;
Prichard et al., 2020). Although we do not have data quantifying prefire
surface fuels on our plots, many other studies have shown that fire
treatments reduce total surface fuel loads, which are important drivers
of fire spread and intensity (Pollet and Omi, 2002; Stephens et al., 2023,
2012a, 2009). We found very little difference in forest structure and
composition between our mechanical thinning treatments (with and
without fire), which suggests that the difference between the two
treatments were likely differences in surface fuel conditions prior to the
fire. The importance of the fire treatment was also identified in a spatial
analysis of the Dixie Fire by Taylor et al. (2022), who detected a strong
“ecological memory” of past fire severity, where lower fire severity in a
prior fire was linked with lower severity in the Dixie Fire (Taylor et al.,
2022). Lower severity wildfires that occurred prior to the Dixie Fire
likely had the same effect as active management treatments that
included broadcast burning or pile burning. These results highlight how
prefire broadcast burning or pile burning treatments can initiate a
positive feedback, where lower severity burning via active management
can promote lower severity burning under wildfire conditions (Larson
et al., 2013; Steel et al., 2021; Taylor et al., 2022).
Many fuel treatment effectiveness studies have found that, though

somewhat less effective, mechanical-only treatments can result in re-
ductions in fire severity, but our results were mixed between our two
modelling approaches. For stand-replacing fire, the Mechanical-only
treatment did not differ from the Untreated plots and the forest struc-
ture variables, which quantify the reduced tree densities and altered
forest structure in Mechanical-only plots, were not important predictors.
We hypothesize that this is because stand-replacing wildfire occurred
during more extreme burning conditions. The PAratio, which can be
understood as a proxy for large fire growth, was strongly associated with
stand-replacing wildfire. The correlation between PAratio and relative
humidity was weak (Pearson’s correlation coefficient: 0.33), but lower
PAratios did tend to coincide with lower minimum relative humidity.
We therefore hypothesize that the ratio is likely representing several
drivers of large fire growth; these could include minimum relative hu-
midity, as well as landscape-level fuels patterns and topographic vari-
ation, including topography’s impact on winds, that are not captured in
our other explanatory variables. In that case, our finding that forest
structure variables were not associated with stand replacing fire is
consistent with other studies documenting that fuels treatments can be
less effective under more extreme fire behavior conditions (Lydersen
et al., 2014). Taylor et al. (2022) also found limited mechanical treat-
ment effectiveness in the Dixie Fire, but they found that treatment ef-
ficacy was dependent on the treatment occurring within ten years prior
to the fire, whereas we found no effect of time since treatment (note: our
sampled treatments spanned 20 years prior to the fire).
In contrast, while the Mechanical + fire remained important in

reducing percent basal area mortality for plots that did not experience
stand replacement, the Mechanical-only treatments also reduced
percent basal area mortality over Untreated areas. Additional explora-
tion revealed that this reduction in mortality was linked with higher
QMDs and lower relSDI values. These forest structure characteristics are
generally indicative of lower density forests dominated by larger trees,
which resulted in reduced mortality, including when they occurred in
Untreated plots. However, these structures were more common where

mechanical treatments were applied (i.e., both the Mechanical + fire
and Mechanical-only treatments), with the Mechanical-only treatment
having the highest prefire median QMD. The effectiveness of mechanical
thinning alone under more moderate conditions highlights that, even
though it is less effective than mechanical thinning followed by a fire
treatment, it is still more effective than no treatment for promoting
forest persistence on the landscape.
Finally, several other studies have documented weather variables as

strong drivers of fire severity (Estes et al., 2017; Lydersen et al., 2014;
Taylor et al., 2022, 2020), and although we did detect relationships with
weather variables for both the probability of stand replacement and
percent basal area mortality in our univariate models, none were
important once they were combined with other predictor variables.
Similar to the Taylor et al. (2022) work in the Dixie Fire, we detected a
relationship between fire severity and both ERC and maximum humid-
ity, but these variables were not strong predictors in our final models.
We hypothesize that this difference in results could be due in part to
differences in approach, where Taylor et al. (2022) covered the entire
fire area (and therefore a wider range of weather and forest conditions),
used remotely-sensed estimates of burn severity rather than plot-based
estimates that provided information on forest structure. Lydersen et al.
(2014) found BI to be an important predictor of fire severity, but they
also used remotely-sensed burn severity. Brodie et al. (2024) did use plot
data to test how first order fire effects varied depending on BI and
treatment type, but they do not present results of the effect of BI alone,
so we cannot directly compare our results (Brodie et al., 2024). We
hypothesize that though weather variables, particularly relative hu-
midity and related indices (ERC, BI), are known drivers of fire severity,
the influence of stand structure and fine scale variation in topographic
position may result in more variation in severity patterns at the
plot-level (Jeronimo et al., 2020).

4.2. Prefire and postfire forest conditions in relation to target conditions

One fundamental goal of forest restoration treatments is to reduce
the probability of stand-replacing wildfire (USDA Forest Service, 2012).
To meet this goal, treatments are often designed to manipulate forest
structure and composition with the intent of moving conditions closer to
HRV structural targets and greater pine dominance (North et al., 2009).
Compared to Untreated stands, the mechanical thinning treatments in
our study area resulted in a prefire forest structure (i.e., tree density,
basal area, QMD and relSDI) that closely matched desired conditions as
defined by HRV and restoration objectives. Stands that were treated
with mechanical thinning (both Mechanical only and Mechanical+ fire)
had significantly fewer trees, lower basal area, and larger trees than
adjacent untreated stands, and were largely within HRV target ranges.
Despite these similarities in prefire forest structural attributes, the

two treatments differed in their postfire trajectories. Most of the Me-
chanical+ fire plots (82 %) stayed within HRV, which is consistent with
recent work that documented how wildfires can extend the effective
lifespan of a fuel treatment by acting as a maintenance treatment (Low
et al., 2023). In contrast, 49 % of all Mechanical-only plots had no live
trees postfire (moving them well below the HRV). This suggests that
meeting HRV or restoration targets for tree density alone may not be
enough to maintain forests within those target ranges after a wildfire.
AlthoughMechanical+ fire plots had the greatest proportion of plots

within the HRV postfire, all three treatment classes had at least some
plots that were within HRV after the wildfire. This highlights the op-
portunity for managers to work with wildfire to achieve restoration
targets. Stands that burned at low-moderate severity in a wildfire, and
that have postfire forest structure that is consistent with restoration
targets, present opportunities to maintain forests on the landscape.
Although postfire conditions will vary on the ground depending on site
productivity, disturbance history, and degree of fire severity (even
within severity class), lower severity areas often have live mature trees,
reduced live tree density, and some reduction in surface fuels (Collins
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et al., 2016; Jeronimo et al., 2019). Maintaining or enhancing these
conditions via follow-up maintenance treatments or managed wildfire
for ecological benefit can help retain mature forests on the landscape
(Low et al., 2023; Prichard et al., 2021). There will likely be substantial
variation in the timing of retreatment needs based on local conditions
and treatment history. For example, sites that had at least one treatment
prior to the fire, making the wildfire a second “treatment,” can likely be
put into a longer maintenance treatment schedule than sites that expe-
rienced wildfire as an initial entry treatment. For the few Untreated sites
that were within HRV for tree density postfire, retreatment will likely be
needed sooner, as numerous studies have shown that in long-unburned
forests, multiple treatments are often required to meet targets for forest
structure and fuels (Lydersen and North, 2012; Taylor, 2010; Webster
and Halpern, 2010). This is likely because, in stands with a high density
of trees, the first low severity fire typically creates a lot of dead material
and may not substantially change forest structure (Collins et al., 2018,
2011).
It is also important to consider that while a single low-moderate

severity fire treatment may reduce tree densities to within the HRV, it
may not be enough to shift species composition into alignment with
historical patterns, where the shade-intolerant pines are more dominant
than the shade-tolerant species (North et al., 2009; Paudel et al., 2022).
In our stands, the median proportions of shade intolerant species basal
area and tree density saw little change to a slight increase in the Me-
chanical+ fire plots, but declined in the Mechanical-only and Untreated
plotsrepresenting a shift further away from target conditions.
The Mechanical + fire plots had essentially no change in the pro-

portion of shade intolerant basal area and only a very slight increase in
the proportion of shade intolerant tree density.
More recently, relSDI competition thresholds have been proposed as

an alternative to HRV for defining target conditions (North et al., 2022).
North et al. (2022) suggest that historical mixed conifer stands that
experienced frequent-fire disturbance regimes had relSDI values that
ranged from 23 % to 28 % of maximum SDI, indicating low to
non-existent levels of competition. Prior to the Dixie Fire, only the
Mechanical + fire plots had a median relSDI below the 34 % threshold
for low competition, and that median just met the high end of the his-
torical relSDI range after the fire. The Mechanical-only and Untreated
plots both had prefire medians above the 34 % threshold, and although
some of these plots shifted into target ranges postfire, the medians for
both of these classes were well below the lower end of the target range,
with many plots unforested postfire. Reference conditions defined by
HRV, relSDI or species composition were more likely to be met both
prefire and postfire in Mechanical + fire plots. This suggests that, in
addition to reducing fire severity, thinning treatments followed by fire
may also be more effective at setting wildfire up to have restorative
effects on forest conditions than mechanical treatments alone.

4.3. Study limitations

Our study is based on a single large wildfire encompassing a variety
of treatment, site, and wildfire conditions with results applicable to
other western US forests historically adapted to frequent fire, but we
acknowledge several limitations. We examined local scale effects of fuels
treatments using plot data but did not measure landscape level or
“downstream” effects of fuels treatments (i.e. effects of treated areas on
fire behavior and severity in adjacent untreated areas). Due to sample
size, we combined pile burning and broadcast burning treatments into a
single treatment category and are unable to tease apart differing effects
from these two management practices. We have inferred that the reason
for reduced probability of stand replacement and percent basal area
mortality in Mechanical + fire plots versus Mechanical-only and Un-
treated plots is due to a reduction in surface fuels with the fire treatment,
which has been shown in many studies, but we do not have data
quantifying pre-fire surface fuels, and thus are unable to directly test
that hypothesis. We also did not quantify pre- and post-fire spatial

variability in forest structure as a possible driver of wildfire severity
patterns. Finally, our metrics of fire weather are imperfect since they do
not capture real-time conditions at the microsite level, but rather are
daily averages representing a broader spatial scale than our plots (i.e.
4 km grid size for gridMET and our 0.04 ha plots).

5. Conclusions

Our study corroborates many others in highlighting the importance
of following up mechanical thinning with a fire treatment to increase
treatment effectiveness at reducing wildfire severity (Davis et al., 2024;
Fulé et al., 2012; Pollet and Omi, 2002; Prichard et al., 2020; Safford
et al., 2012, 2009; Stephens et al., 2023; Taylor et al., 2022; Tubbesing
et al., 2019). Although we do not have data quantifying prefire surface
fuels, many other studies have shown that fire treatments reduce total
surface fuel loads, which are important drivers of fire spread and in-
tensity (Pollet and Omi, 2002; Stephens et al., 2023, 2012a, 2009). We
found very little difference in forest structure and composition between
our mechanical thinning treatments (with and without fire), which
suggests that the patterns we observed were likely a result of differences
in surface fuel conditions prior to the fire.
Our study is unique in its approach to examining pre- and postfire

forest structure in relation to target conditions and prefire treatments.
By explicitly looking at stand transitions and treatment history, forest
managers can better anticipate postfire outcomes and can also identify
opportunities to work with wildfire by capitalizing on wildfire’s restor-
ative effects. Although recent guidance from the US Forest Service
outlines a clear approach to include the entire fire area in an evaluation
of postfire management needs (Meyer et al., 2021), most postfire man-
agement plans by federal agencies are still limited to reforestation and
restoration activities in high severity areas. Ensuring that forests that
survived the wildfire and that are in line with restoration targets persist
on the landscape by conducting long-term forest management that
maintains them in a resilient condition could have significant habitat
and carbon benefits (Moomaw et al., 2019).
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